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Abstract. Measuring graph clustering quality remains an open prob-
lem. Here, we introduce three statistical measures to address the prob-
lem. We empirically explore their behavior under a number of stress test
scenarios and compare it to the commonly used modularity and con-
ductance. Our measures are robust, immune to resolution limit, easy to
intuitively interpret and also have a formal statistical interpretation. Our
empirical stress test results confirm that our measures compare favorably
to the established ones. In particular, they are shown to be more respon-
sive to graph structure, less sensitive to sample size and breakdowns
during numerical implementation and less sensitive to uncertainty in
connectivity. These features are especially important in the context of
larger data sets or when the data may contain errors in the connectivity
patterns.

1 Introduction

While there are many graph clustering1 algorithms in the literature (e.g., [15,17,
21,24]), measuring their performance, that is assessing the quality of the clusters
they identify, remains an open problem [1,3,6,11–13,16,23]. Graph clustering is a
form of unsupervised learning, where one typically cannot count on labeled data
to assess results. For example, in [20], the authors correctly assert that “(...)
running a clustering algorithm over a set of randomly generated data points will
always produce clusters which, however, have little meaning.” Therefore, our only
quality measure is a thorough assessment of the graph’s and resulting clusters’
connectivity patterns.

In this article, we present new clustering performance measures to assess the
strength of the clustering returned by a specific algorithm and compare cluster-
ings across algorithms on a specific graph. We restrict our attention to undirected
1 Note on vocabulary: Although there are subtle differences between the concepts

of graph clustering and community detection, in this document we use the two
interchangeably.
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unweighted and weighted graphs, with no self-loops or multiple edges. We begin
with a review of two of the most common clustering performance measures, mod-
ularity and conductance. We empirically demonstrate how these measures may,
in some cases, be drowned out by graph structure and lack sensitivity. We also
offer three alternative measures, which are shown to be more robust.

2 Performance Measures

In this section, we describe the two most popular performance metrics in the
literature, namely modularity and conductance. We also present our own sta-
tistical measures, the “Kappas”. In the following sections, we will empirically
analyze their strengths and weaknesses.

2.1 Modularity

Modularity (Q) is by far the most popular measure of clustering performance
[4,5,8,13,17–19]. It was originally introduced by Newman and Girvan in 2004
[17] and has been extensively used both as a performance measure and objective
function for clustering algorithms (e.g., [2,7,17]). In this section, we present
modularity (Q) as defined in [5].

Q =
k∑

i=1

⎛

⎜⎝ei,i − a2
i︸ ︷︷ ︸

qi

⎞

⎟⎠
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Av,. δ(cv, i)

Here, m = |E| is the total number of edges in the graph, k is the number of
clusters, Av,w is the element at the intersection of the v-th row and w-th column
of the adjacency matrix, Av, is the entire v-th row of the adjacency matrix, δ(x, y)
is the Kroenecker delta function, ei,i is the portion of vertex degree connecting
vertices within cluster i, ai is the total vertex degree in cluster i and cv is the
cluster in which vertex ‘v’ is clustered into by the algorithm. Putting it together,
we get

Q =
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(A high value indicates densely connected clusters.)
In closing, it should be noted that modularity suffers from a resolution limit,

as described by Fortunato and Bathélemy [9]. These authors describe how any
(clustering) quality function that is defined as a sum of qualities of individual
clusters where terms from smaller clusters are dominated by terms from larger
clusters suffers from resolution limit. Because the smaller clusters’ contribution
to the sum is dominated by the larger clusters, the final result is also dominated
and does not always reflect the structure accurately. Indeed, in (1), we see how
larger clusters dominate the outer summation.

2.2 Conductance

Conductance (φ, Φ) is another popular clustering performance measure [6,13,14,
22,23]. In this article, we use the definition presented in [22].

At the individual cluster level,

φ(S) =
∂(S)

min (d(S), d(V \ S))

At the graph level,
Φ(G) = min

S
φ(S)

Here, ∂(S) is the number of edges joining vertices in cluster S to vertices outside
S, d(S) is the sum of vertex degrees within S and d(V \ S) the sum of vertex
degrees on the graph, outside S. (A low conductance indicates strongly connected
clusters.)

2.3 The Kappas

Our overarching goal in developing our measures is to gauge the strength of
connectivity on the graph in general, within individual clusters and between
clusters. While the established measures of clustering strength, modularity and
conductance, measure intra-cluster connectivity strength, we seek to measure the
strength of intra- and inter-cluster connectivity relative to the overall graph’s
connectivity. For example, in a densely connected graph we expect clusters to be
even more strongly connected and strong inter-cluster connections can be con-
sistent with a good partition. Conversely, in a densely connected graph, poorly
connected clusters or strong inter-cluster connectivity are symptoms of a poor
clustering.

We define K̄ as the graph’s overall connectivity ratio, K̄intra as the measure
of intra-cluster connectivity and K̄inter as the measure of inter-cluster connec-
tivity. According to every definition of a good clustering, we expect that an effi-
cient clustering algorithm will label vertices such that intra-cluster connectivity
is greater than inter-cluster connectivity [8,18,19] (if the graph does indeed have
a clustered structure). Under our model, we expect that a good clustering will
group vertices so they form clusters whose vertices are more densely connected
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than the average connection between any two vertices on the graph. Similarly,
we expect that a good clustering will group vertices so they form clusters whose
vertices are less densely connected to those in other clusters than the average
connection between any two vertices on the graph. In summary, we expect that
under a good clustering the inequalities K̄intra > K̄ > K̄inter will hold. Our
model also allows these inequalities to be formulated as a hypothesis test, as will
be shown later.

Below, we present the formulation for our clustering measures, for an
unweighted undirected graph, but our metrics easily generalize to weighted
graphs as well. In our formulation, we use the following variables: The set of
all clusters is C = {C1, . . . , Ck}, with |C| = k, the total number of vertices in
the graph is N , the total number of vertices in cluster i is |Ci| = ni, the set of all
edges on the graph is E = {e1, . . . , em}, where |E| = m. Finally, Ei,j is the set of
edges connecting a vertex in cluster i to a vertex in cluster j, and |Ei,j | = mi,j .
As a special case, note that Ei,i is the set of edges within cluster i, and mi,i is
the number of edges connecting vertices within cluster i.

In order to gauge the strength of the entire graph’s, of each cluster’s and
each inter-cluster pair’s connectivity, we take the ratio of the observed edges
over the maximum possible number of edges given the number of vertices. For
inter and intra cluster connectivity, we compute the ratio for each cluster or pair
of clusters and take their mean as a graph-wide measure. All our measures lie
in the [0, 1] interval, with high values denoting highly connected graphs, clusters
or cluster pairs and vice-versa.

We define the graph’s connections ratio as

K̄ =
|E|

0.5 × N(N − 1)
.

The graph’s connection ratio is the ratio of the total number of edges over the
number of edges in a complete graph with the same number of vertices. The
closer K̄ is to 1, the closer the graph is to being a complete graph. Conversely,
the closer K̄ is to 0, the closer the graph is to being a set of disconnected vertices.

We also define the mean intra-cluster connections ratio as

K̄intra =
1
K

κ∑

i=1

|Ei,i|
0.5 × ni(ni − 1)

.

The mean intra-cluster connections ratio is the mean ratio of the number of
edges within each cluster over the maximum number of edges that could possibly
connect the vertices of each cluster. Each term in the summation is a measure of
how closely each cluster is to being a clique. Each always lies on the interval [0, 1],
with a value of 0 indicating a cluster is just a set of disconnected vertices and a
value of 1 indicating that a cluster is a clique. At the aggregate level, K̄intra is
the sample mean of the individual terms and also lies in the interval [0, 1]. Values
close to 0 indicate poorly connected clusters on average, while values closer to 1
indicate densely connected clusters on average.
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Finally, we define the mean inter-cluster connections ratio as

K̄inter =
1

0.5× k(k − 1)

k∑

i=1

k∑

j=i+1

|Ei,j |
0.5× ((ni + nj)(ni + nj − 1)− ni(ni − 1)− nj(nj − 1))

.

The mean inter-cluster connections ratio is the mean ratio of the number of
edges joining vertices in two different clusters, over the total number of edges
that could possibly connect each pair of vertices in each cluster pair (ci, cj). Each
term in the double summation is a measure of how closely two clusters ‘i’ and ‘j’
are from forming a single clique. Each of these terms also lies in the interval [0, 1],
with a value of 0 indicating no connection between a pair of clusters and a value
of 1 indicating that the pair of clusters forms a clique. At the aggregate level,
K̄inter is the sample mean of the individual terms of the summation and also
lies in the interval [0, 1]. Values close to 0 indicate poor inter-cluster connections,
on average, a desirable feature indicating strong cluster partitions, On the other
hand, values closer to 1 indicate improperly partitioned clusters, on average.

It should also be mentioned that in cases where the connectivity patterns of
the clusters is very noisy, the median of the summation terms can be used in
lieu of the mean, in order to produce more robust measures. Unfortunately, this
substitution makes statistical interpretation and significance testing less obvious.

Resolution Limit and Sensitivity to Cluster Size. It is important to note
that neither K̄intra nor K̄inter are affected by individual cluster size and do
not suffer from the resolution limit observed in modularity [9]. Large clusters
do not skew their values, since all terms in the sums are scaled by the total
number of possible edges within each cluster or pair of clusters and always lie
on the [0, 1] interval. This feature makes these measures robust to large “mega-
clusters” that are often observed in real-world networks and to the fallacious
tendency of clustering algorithms to lump all vertices together in a few very
large clusters. (Naturally, K̄ is a graph-wide measure that remains completely
agnostic to clusters and their respective sizes.)

The equal weight carried by each cluster or pair of cluster does, however, have
its drawbacks. Because our measures are unweighted means, they are somewhat
sensitive to outliers. For example, a few unrepresentative small clusters could
indeed skew the measures. However, the effect of outliers is typically smoothed
out by the mean or can be corrected by the use of a weighted mean.

Statistical Interpretation of the Kappas. The main strength of our Kap-
pas comes from their statistical definition. In the unweighted case, K̄ is the
probability any two nodes are connected, and in the weighted case it becomes
the mean edge weight. Similarly, K̄intra (K̄inter) is the mean probability two
nodes within a cluster (between clusters) are connected or the mean intra-cluster
(inter-cluster) edge weight.

In probabilistic terms, we expect a good clustering to partition the graph
such that the probability there exists an edge (ei,j) between two arbitrary nodes
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‘i’ and ‘j’ is lower than the probability a connection exists if these nodes are in
the same cluster (i.e., if ci = cj) and higher than when they belong to different
clusters (i.e., ci �= cj). Mathematically, we expect the following to hold:

Pr [ei,j |ci = cj ] > Pr[ei,j ] > Pr[ei,j |ci �= cj ]

In the case of a weighted graph, these probabilities become expected values of
edge weights between arbitrary vertices, vertices within and vertices between
clusters, and we expect the following inequalities to hold:

E[ei,j |ci = cj ] > E[ei,j ] > E[ei,j |ci �= cj ]

Defining our measures in this way, as estimates of an unknown “true” param-
eter, with an associated standard error, allows formal significance testing using
a simple t-test. Such tests can be used to determine if the clusters identified by
an algorithm are statistically significant. If they are, we expect the inequalities
K̄intra > K̄ > K̄inter to hold at a reasonable significance level. These inequal-
ities are necessary and sufficient to conclude the clusterings returned by an
algorithm are statistically (on average) consistent with the universally accepted
definition of a clustering. [8,18,19]. Our statistics can also be used when com-
paring two or more algorithms’ performances on a given graph. In such a case,
in order to conclude algorithm ‘a’ is better than algorithm ‘b’, we should observe
K̄a

intra > K̄b
intra and K̄a

inter < K̄b
inter.

Finally, let us note that our statistical (i.e., non deterministic) definition also
allows for uncertainty in the connectivity, another open problem [10]. Unlike
modularity and conductance, our measures are defined as statistical measure-
ments with associated standard errors, not deterministic quantities.

To formally confirm statistical significance and the strength with which the
sufficient conditions are met, we formulate an appropriate null hypothesis and
apply the t-test. Examples of such a test are shown in Sect. 4.4.

3 Computational Experiments

In order to empirically assess the accuracy of the various performance measures,
to study their response to various graph structures and cluster labelings, we sub-
ject them to a number of numerical stress test scenarios, using simulated graphs
and labels. The full experimental set-up of our individual tests and scenario
details are described in the next sub-section.

Overall, our goal is to test the accuracy and robustness of our clustering
measures and compare their behavior to that of the two main clustering measures
in the literature (modularity and conductance). Simulation is used to generate
test scenarios where the clustering structure is known in advance and could be
modified easily. These test scenarios are then used to examine and compare the
sensitivities of the kappas, modularity and conductance. Our scenarios include a
number of contrived instances, which are useful to stress test our metrics through
“extreme” examples and compare their behavior to those of the more established
measures.
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The overarching logic guiding our tests is that a good measure of inter-
or intra- cluster connectivity should accurately reflect the simulated graph’s
structures. We would expect measures of intra-cluster connectivity, Kintra and
modularity to increase in step with the simulated graph’s connectivity levels,
while we would expect conductance to display the inverse behavior. We would
also expect Kinter to follow the fluctuations of inter-cluster connectivity.

It should also be mentioned that some authors have used so-called “ground-
truth” data sets, networks where the nodes’ cluster memberships were labeled,
as benchmarks for clustering algorithm performance (e.g., [16,23,24]). Our app-
roach is more general, data set and objective function independent. Arguably,
the fact that an algorithm anecdotally provided accurate clustering on a labeled
instance is no guarantee it will perform equally well on another (likely unlabeled)
instance. In addition, our experiments provide us with an understanding of each
measure’s sensitivity and response to graph structure.

3.1 Experimental Set-Up

In the first set of experiments, shown in Table 1, we examine the effect of intra-
cluster connectivity. We begin with a graph with no edges between any of the
vertices and gradually increase intra-cluster connectivity in steps of 25%, while
maintaining inter-cluster connectivity at 0% (e.g., 25% of nodes are connected
to another node within their assigned cluster, 75% of nodes in each cluster have
no connections at all, nodes with connections only have connections to other
nodes within their assigned cluster, each cluster is disconnected from the rest of
the graph).

We then examine the effect of inter-cluster connectivity on each measure.
We begin with no inter-cluster connectivity and then increase it in steps of 25%
(e.g., 25% of nodes are connected to 25% of nodes outside their cluster), while
keeping intra-cluster connectivity at 0%. In other words, clusters are just sets of
disconnected vertices. In these scenarios, we imagine an algorithm, one with a
very poor cluster detection ability, that groups disconnected vertices into clusters
with different levels of inter-connection to other clusters but with an intra-cluster
connectivity that remains constant at 0%. Results are shown in Table 2.

In our experiments, we expect K̄intra to increase in step with intra-cluster
connection percentage. We also expect K̄inter to increase in step with inter-
cluster connection percentage. If this in-step increase occurs, it indicates our
measures accurately detect the graph’s connectivity structure.

Finally, in order to assess our measures’ robustness, we repeat all the tests
described above, but with the introduction of “noise” in the connectivity pat-
terns. Noise is introduced in the form of 100% intra-(inter-) cluster connectivity.
Results are shown in Tables 3 and 4.

In the tables that follow, we also report each graph’s characteristics, for each
experiment. The total number of vertices is denoted by N , the total number of
clusters by |C|, and the total number of edges by |E|.
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Table 1. Varying intra-cluster connectivity, no noise from inter-cluster connectivity

Pct Inter = 0, Pct Intra varies

Pct Intra 0 25 50 75 100

N 10,048 9,440 9,666 10,493 10,039

|C| 200 200 200 200 200

|E| 0 76,942 160,147 269,341 336,942

K̄ 0.00 0.00 0.00 0.00 0.01

K̄intra 0.00 0.26 0.50 0.75 0.99

Std Err (K̄intra) 0.00 0.01 0.01 0.01 0.01

K̄inter 0.00 0.00 0.00 0.00 0.00

Std Err (K̄inter) 0.00 0.00 0.00 0.00 0.00

Φ 0.00 0.00 0.00 0.00 0.00

Q 0.00 0.99 0.99 0.99 0.99

Table 2. Varying inter-cluster connectivity, no noise from intra-cluster connectivity

Pct Intra = 0, Pct Inter varies

Pct Inter 0 25 50 75 100

N 10,530 10,089 9,354 10,028 10,829

|C| 200 200 200 200 200

|E| 0 3,058,924 10,753,463 27,815,367 58,250,108

K̄ 0.00 0.06 0.25 0.55 0.99

K̄intra 0.00 0.00 0.00 0.00 0.00

Std Err (K̄intra) 0.00 0.00 0.00 0.00 0.00

K̄inter 0.00 0.06 0.24 0.55 1.00

Std Err (K̄inter) 0.00 0.00 0.00 0.00 0.00

Φ 0.00 1.00 1.00 1.00 1.00

Q 0.00 −0.01 −0.01 −0.01 −0.01

4 Discussion

As shown in Sect. 3, our “Kappas” behave as expected, even when subjected to
noise. In all instances where the labeling of clusters reflects a good partition, the
inequalities K̄intra > K̄ > K̄inter hold and they do not hold in instances where
the partition reflects poor clustering. For example, in Table 3, all instances are
cases of poor clustering, by design. Similarly, in Table 4, instances where the
percentage of inter-cluster connectivity is below 75% are examples designed to
show good clustering and our inequalities hold in each.

More importantly, our inter- and intra-cluster measures follow the fluctua-
tions of the graph’s connectivity patterns more accurately than either modularity
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Table 3. Varying intra-cluster connectivity, with noise from inter-cluster connectivity

Pct Inter = 100, Pct Intra varies

Pct Intra 0 25 50 75 100

N 10,048 10,096 10,526 10,115 10,182

|C| 200 200 200 200 200

|E| 50,142,540 50,712,690 55,215,342 51,067,113 51,831,471

K̄ 0.99 1.00 1.00 1.00 1.00

K̄intra 0.00 0.25 0.50 0.74 0.98

Std Err (intra) 0.00 0.00 0.01 0.01 0.01

K̄inter 1.00 1.00 1.00 1.00 1.00

Std Err (inter) 0.00 0.00 0.00 0.00 0.00

Φ 1.00 1.00 1.00 0.99 0.99

Q −0.01 0.00 0.00 0.00 0.00

Table 4. Varying inter-cluster connectivity, with noise from intra-cluster connectivity

Pct Intra = 100, Pct Inter varies

Pct Inter 0 25 50 75 100

N 9,917 9,662 10,512 10,043 10,151

|C| 200 200 200 200 200

|E| 314,102 3,127,922 13,942,175 28,187,302 51,516,325

K̄ 0.01 0.07 0.25 0.56 1.00

K̄intra 1.00 0.99 1.00 1.00 1.00

Std Err (intra) 0.00 0.01 0.00 0.00 0.00

K̄inter 0.00 0.06 0.24 0.54 1.00

Std Err (inter) 0.00 0.00 0.00 0.00 0.00

Φ 0.00 0.85 0.96 0.98 0.99

Q 0.99 0.09 0.02 0.01 0.00

or conductance. It should be noted however, that K̄inter is less responsive to
increases in inter-cluster connectivity than K̄intra is to increases in intra-cluster
connectivity and that a graph’s overall connectivity (K̄) closely reflects inter-
cluster connectivity, especially in cases where the number of clusters is large.
Additionally, we note modularity and conductance display very counterintuitive
behaviors, although on a much larger scale. In the following sections we attempt
to explain these unintuitive behaviors and explain why the “Kappas” provide
a more accurate picture of the graph’s and clusters’ connectivity patterns than
either modularity or conductance.

Finally, in the following sections, we also show that the erratic behavior
displayed by modularity and conductance are the result of their sensitivity to
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numerical implementation and sample sizes. This numerical sensitivity deeply
affected our results with our moderately-sized graphs and clusters. As we will
show in the next sections, this numerical sensitivity would only be compounded
in the case of a larger data set, rendering these measures even less responsive.
These sensitivities to data set size are particularly relevant in the context of
large data sets (“big data”).

4.1 Modularity Under Stress Test

In order to illustrate the lack of responsiveness of modularity and explain the
results in the previous section, we examine the following numerical example:
|C| = 200, N = 16, 400 and ni = 82 ∀i. We then adjust the intra and inter-
cluster connectivities, to examine the effect on modularity. The results are shown
in Tables 5 and 6.

We begin with a clustering algorithm that would be very deficient and returns
“clusters” that have 0% connection within themselves but are fully connected to
the rest of the graph (A0). We gradually increase intra-cluster connectivity to
25% (A25) and 100% (A100), while keeping inter-cluster connectivity constant at
100%. We then do the opposite, we begin with 200 isolated complete graphs (in
B0, each cluster is an isolated complete graph) and then increase inter-cluster
connectivity to 25% (B25). These experiments are almost the same as those
shown in Sect. 3, except that we kept cluster size constant, at 82 vertices, in
order to facilitate calculations.

Table 5. Varying intra-cluster connectivity

Scenarios A0 A25 A100
Components of Q e ii a i e ii a i e ii a i

cluster 1 0 0.005 0.00001 0.005 0.00002 0.005
cluster 2 0 0.005 0.00001 0.005 0.00002 0.005

...
...

...
...

...
...

...
cluster K 0 0.005 0.00001 0.005 0.00002 0.005

In Table 5, we see that with NO connectivity within clusters, Q ≈ 200× (0−
0.0052) ≈ 0. Now if we raise the intra cluster connectivity from 0% to 25%, we
add �0.25 × 82 × 81� = 831 edges to the graph, all of which connect vertices
within clusters.

The ai portion remains essentially unaffected, because the ai of each node
is scaled by 1

4m2 (i.e., increase of 831
4m2 ). On the other hand, ei,i, which is scaled

by 1
2m (i.e., increase of 831

2m ) goes up ever so slightly, but on a different order of
magnitude, and the denominator (m) also increases. So in the end, the added
connectivity only has an infinitesimal effect on the value of Q:

Q ≈ 200 × (0.00001 − 0.0052) ≈ 0
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Increasing the intra-cluster connectivity even further to 100% does not affect
the value of Q either. Indeed, the number of intra-cluster edges increases to
82 × 81 × 0.5 = 3, 321, but this increase is scaled by 1

2m or 1
4m2 , while m also

increases as well. So in the end, Q remains indistinguishable from 0, Q ≈ 200 ×
(0.00002 − 0.0052) ≈ 0.

Table 6. Varying inter-cluster connectivity

Scenarios BO B25
Components of Q e ii a i e ii a i

cluster 1 0.005 0.005 0.00038 0.005
cluster 2 0.005 0.005 0.00038 0.005

...
...

...
...

...
cluster K 0.005 0.005 0.00038 0.005

In Table 6, we observe that when none of the vertices within clusters are
connected to vertices outside their cluster, yet all have connections to vertices
within their assigned clusters (case of K isolated complete graphs), ei,i = ai.
As a result Q ≈ 200 × (0.005 − 0.0052) ≈ 1. But as soon as inter-cluster con-
nectivity increases, Q collapses. Increasing inter-cluster connectivity dramati-
cally increases m, which dramatically reduces ei,i. Simultaneously, ai increases,
although very modestly. With 200 connected components, modularity quickly
reaches its maximum, Q ≈ 200 × (0.005 − 0.0052) ≈ 1. With 25% inter-cluster
connectivity, it quickly approaches 0, Q ≈ 200× (0.00038− 0.0052) ≈ 0.07. Note
that although the degree of each vertex does indeed increase and contribute to
increasing each ai, the denominator of each ai is 4m2, a graph-wide number.
In the end, any increase in the cluster-centric numerator of ai is eliminated by
a dramatic graph-wide increase in m. Also note that, predictably, increases in
inter-cluster connectivity beyond 25% make Q rapidly converge to zero.

4.2 Conductance Under Stress Test

Conductance is calculated at the cluster level and we assign Φ(G) the minimum
value of all φ(S). Taking the minimum makes conductance very sensitive to
outliers and not robust at all. In the event the graph has even one single cluster,
call it S̃, that is densely connected, then φ(S̃) ≈ 0. Consequently, Φ(G) ≈ 0,
regardless of network configuration.

In the results shown in Sect. 3, conductance breaks down for a different rea-
son, however: In the case of an edge-less graph the denominator of conductance
is zero, so we set φ(S) = 0, by convention. Later, as we raise intra-cluster connec-
tivity, the denominator remains zero, because inter-cluster connectivity is kept
at 0% (Table 1). In the case of completely disconnected “clusters” (incorrectly
labeled as clusters by the algorithm), the denominator is again 0. The denomi-
nator remains unchanged, when we increase inter-cluster connectivity (Table 2).
This pattern repeats with the introduction of noise (Tables 3 and 4).
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4.3 Kappas Under Stress Test

As shown in Sect. 3, our Kappas behave as expected, even if K̄inter appears
less responsive to graph structure than K̄intra, K̄inter closely mirrors K̄ and
K̄intra increases slowly in the case of our weighted examples. This relatively
slow response and mirroring are completely consistent with the definitions. Note
that when one edge is added anywhere on the graph, K̄ goes up by 1/(0.5×N ×
(N −1)), a very small amount. When one edge is added within a cluster, K̄intra
also goes up, but by a larger amount:

(1/k)/(0.5 × ni × (ni − 1))

When an edge is added between clusters, K̄inter also only goes up by a small
amount:

1
0.5×κ×(κ−1)

0.5 × [(ni + nj)(ni + nj − 1) − ni(n1 − 1) − nj(nj − 1)]

In the case of weighted graphs, our weights (wi,j) are all in the [0, 1] interval, so
when one edge is added within a cluster K̄intra increases by

(wi,j/k)/(0.5 × ni × (ni − 1)) ≤ (1/k)/(0.5 × ni × (ni − 1)).

It is also important to note that even in instances where K̄inter or K̄intra are not
as responsive as expected, the relative magnitude of the measures still correctly
identifies highly clustered graphs. In all our experiments strong clusters were
always characterized by the inequality K̄intra > K̄ > K̄inter.

Finally, we call the readers’ attention to the standard errors of the various
Kappas, which remain stable around 0. We show standard errors to emphasize
the statistical nature of the Kappas. However, due to the pre-defined homoge-
neous connectivity patterns used in our computational experiments, variance
(standard deviation) in connectivity is relatively low. Additionally, a small stan-
dard deviation is then scaled by a relatively large denominator (

√
200), which

reduces it even more.

4.4 An Example of Formal Statistical Testing for Kappas

As discussed previously, one of the strengths of our measures is their statisti-
cal definition. This definition allows us to perform formal statistical testing to
confirm our conclusions. Here, we illustrate our claim by showing two examples,
in Table 7. Our null hypotheses are, in the first test, K̄intra ≤ K̄ and, in the
second test, K̄inter ≥ K̄. The goal of these tests is to formally verify the quality
of the clustering identified by an algorithm. If the clustering is good, the null
hypotheses K̄intra ≤ K̄ and K̄intra ≥ K̄ should be rejected, at the usual confi-
dence levels (0.01, 0.05). If the clustering is bad, as it is in our first example, we
expect the null not to be rejected.



182 P. Miasnikof et al.

Table 7. Hypothesis test example

Test K̄intra Test K̄inter

Null Hyp K̄intra ≤ K̄ K̄intra ≥ K̄

Alt. Hyp K̄intra > K̄ K̄inter < K̄

Pct inter (actual) 1 0.75

Pct intra (actual) 0.75 1

|C| 200 200

K̄ 1.00 0.56

K̄intra 0.74 na

Std Error 0.01 na

K̄inter na 0.54

Std Error na 0.001

t-statistic −26 −20

Deg freedom 199 19,899

p-value 0.000 0.000

Reject null? NO YES

5 Conclusion

We described a new set of statistical clustering measures that allow formal qual-
ity assessments and comparison of algorithms. Our measures are shown to be
more robust than the commonly used modularity and conductance. In particular,
our measures appear to be more responsive to cluster labeling and less sensitive
to sample size, resolution limit and breakdowns during numerical implementa-
tion. This latter feature is especially important in the context of larger data
sets.

In this article, we restricted our attention to non-overlapping clusters, since
that is what most clustering techniques identify. Future investigations could
focus on extensions to measuring the strength of overlapping clusters.
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