Skip to main content

Towards a Systematic Evaluation of Generative Network Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10836))

Abstract

Generative graph models play an important role in network science. Unlike real-world networks, they are accessible for mathematical analysis and the number of available networks is not limited. The explanatory power of results on generative models, however, heavily depends on how realistic they are. We present a framework that allows for a systematic evaluation of generative network models. It is based on the question whether real-world networks can be distinguished from generated graphs with respect to certain graph parameters.

As a proof of concept, we apply our framework to four popular random graph models (Erdős-Rényi, Barabási-Albert, Chung-Lu, and hyperbolic random graphs). Our experiments for example show that all four models are bad representations for Facebook’s social networks, while Chung-Lu and hyperbolic random graphs are good representations for other networks, with different strengths and weaknesses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Attar, N., Aliakbary, S.: Classification of complex networks based on similarity of topological network features. Chaos 27(9), 1–7 (2017)

    Article  Google Scholar 

  2. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)

    Article  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah? SIGKDD Explor. 2(2), 1–13 (2000)

    Article  Google Scholar 

  5. Bläsius, T., Friedrich, T., Krohmer, A., Laue, S.: Efficient embedding of scale-free graphs in the hyperbolic plane. In: 24th ESA, pp. 16:1–16:18 (2016)

    Google Scholar 

  6. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24(1), 5–34 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algor. 18(3), 279–290 (2001)

    Article  MathSciNet  Google Scholar 

  8. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. 99(25), 15879–15882 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6(2), 125–145 (2002)

    Article  MathSciNet  Google Scholar 

  10. Easley, D., Kleinberg, J.: The small-world phenomenon. In: Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Chap. 20, pp. 611–644. Cambridge University Press (2010)

    Google Scholar 

  11. Eggemann, N., Noble, S.D.: The clustering coefficient of a scale-free random graph. Discrete Appl. Math. 159(10), 953–965 (2011)

    Article  MathSciNet  Google Scholar 

  12. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  13. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Amorim Fernández-Delgado, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Friedrich, T., Krohmer, A.: On the diameter of hyperbolic random graphs. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 614–625. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_49

    Chapter  Google Scholar 

  15. Gugelmann, L., Panagiotou, K., Peter, U.: Random hyperbolic graphs: degree sequence and clustering. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 573–585. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31585-5_51

    Chapter  MATH  Google Scholar 

  16. Karp, R.M.: The probabilistic analysis of combinatorial optimization algorithms. In: Proceedings of the International Congress of Mathematicians, pp. 1601–1609 (1983)

    Google Scholar 

  17. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  MathSciNet  Google Scholar 

  18. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015). http://networkrepository.com

  19. Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  20. Soundarajan, S., Eliassi-Rad, T., Gallagher, B.: A guide to selecting a network similarity method. In: SDM, pp. 1037–1045 (2014)

    Chapter  Google Scholar 

  21. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: NetworKit: a tool suite for large-scale complex network analysis. Netw. Sci. 4(4), 508–530 (2016)

    Article  Google Scholar 

  22. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99(9), 5766–5771 (2002)

    Article  MathSciNet  Google Scholar 

  23. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This research has received funding from the German Research Foundation (DFG) under grant agreement no. FR 2988 (ADLON, HYP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Katzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bläsius, T., Friedrich, T., Katzmann, M., Krohmer, A., Striebel, J. (2018). Towards a Systematic Evaluation of Generative Network Models. In: Bonato, A., Prałat, P., Raigorodskii, A. (eds) Algorithms and Models for the Web Graph. WAW 2018. Lecture Notes in Computer Science(), vol 10836. Springer, Cham. https://doi.org/10.1007/978-3-319-92871-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92871-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92870-8

  • Online ISBN: 978-3-319-92871-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics