
Lecture Notes in Computer Science 10887

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Leen Lambers • Jens Weber (Eds.)

Graph
Transformation
11th International Conference, ICGT 2018
Held as Part of STAF 2018
Toulouse, France, June 25–26, 2018
Proceedings

123

Editors
Leen Lambers
University of Potsdam
Potsdam
Germany

Jens Weber
University of Victoria
Victoria, BC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-92990-3 ISBN 978-3-319-92991-0 (eBook)
https://doi.org/10.1007/978-3-319-92991-0

Library of Congress Control Number: 2018944418

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-6937-5167
http://orcid.org/0000-0003-4591-6728

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences and workshops may vary from year to
year, but they all focus on foundational and practical advances in software technology.
The conferences address all aspects of software technology, from object-oriented
design, testing, mathematical approaches to modeling and verification, transformation,
model-driven engineering, aspect-oriented techniques, and tools. STAF was created in
2013 as a follow-up to the TOOLS conference series that played a key role in the
deployment of object-oriented technologies. TOOLS was created in 1988 by Jean
Bézivin and Bertrand Meyer and STAF 2018 can be considered as its 30th birthday.

STAF 2018 took place in Toulouse, France, during June 25–29, 2018, and hosted:
five conferences, ECMFA 2018, ICGT 2018, ICMT 2018, SEFM 2018, TAP 2018, and
the Transformation Tool Contest TTC 2018; eight workshops and associated events.
STAF 2018 featured seven internationally renowned keynote speakers, welcomed
participants from all around the world, and had the pleasure to host a talk by the
founders of the TOOLS conference Jean Bézivin and Bertrand Meyer.

The STAF 2018 Organizing Committee would like to thank (a) all participants for
submitting to and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and (d) the
École Nationale Supérieure d’Électrotechnique, d’Électronique, Hydraulique et des
Télécommunications (ENSEEIHT), the Institut National Polytechnique de Toulouse
(Toulouse INP), the Institut de Recherche en Informatique de Toulouse (IRIT), the
région Occitanie, and all sponsors for their support. A special thanks goes to all the
members of the Software and System Reliability Department of the IRIT laboratory
and the members of the INP-Act SAIC, coping with all the foreseen and unforeseen
work to prepare a memorable event.

June 2018 Marc Pantel
Jean-Michel Bruel

Preface

This volume contains the proceedings of ICGT 2018, the 11th International Conference
on Graph Transformation held during June 25–26, 2018 in Toulouse, France. ICGT
2018 was affiliated with STAF (Software Technologies: Applications and Founda-
tions), a federation of leading conferences on software technologies. ICGT 2018 took
place under the auspices of the European Association of Theoretical Computer Science
(EATCS), the European Association of Software Science and Technology (EASST),
and the IFIP Working Group 1.3, Foundations of Systems Specification.

The aim of the ICGT series is to bring together researchers from different areas
interested in all aspects of graph transformation. Graph structures are used almost
everywhere when representing or modeling data and systems, not only in computer
science, but also in the natural sciences and in engineering. Graph transformation and
graph grammars are the fundamental modeling paradigms for describing, formalizing,
and analyzing graphs that change over time when modeling, e.g., dynamic data
structures, systems, or models. The conference series promotes the cross-fertilizing
exchange of novel ideas, new results, and experiences in this context among
researchers and students from different communities.

ICGT 2018 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (The Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014,
L’Aquila (Italy) in 2015, Vienna (Austria) in 2016, and Marburg (Germany) in
2017, following a series of six International Workshops on Graph Grammars and Their
Application to Computer Science from 1978 to 1998 in Europe and in the USA.

This year, the conference solicited research papers describing new unpublished
contributions in the theory and applications of graph transformation as well as tool
presentation papers that demonstrate main new features and functionalities of
graph-based tools. All papers were reviewed thoroughly by at least three Program
Committee members and additional reviewers. We received 16 submissions, and the
Program Committee selected nine research papers and two tool presentation papers for
publication in these proceedings, after careful reviewing and extensive discussions. The
topics of the accepted papers range over a wide spectrum, including advanced concepts
and tooling for graph language definition, new graph transformation formalisms fitting
various application fields, theory on conflicts and parallel independence for different
graph transformation formalisms, as well as practical approaches to graph transfor-
mation and verification. In addition to these paper presentations, the conference pro-
gram included an invited talk, given by Olivier Rey (GraphApps, France).

We would like to thank all who contributed to the success of ICGT 2018, the invited
speaker Olivier Rey, the authors of all submitted papers, as well as the members of the
Program Committee and the additional reviewers for their valuable contributions to the
selection process. We are grateful to Reiko Heckel, the chair of the Steering Committee
of ICGT for his valuable suggestions; to Marc Pantel and Jean-Michel Bruel,

the organization co-chairs of STAF; and to the STAF federation of conferences for
hosting ICGT 2018. We would also like to thank EasyChair for providing support for
the review process.

June 2018 Leen Lambers
Jens Weber

VIII Preface

Organization

Steering Committee

Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Gregor Engels University of Paderborn, Germany
Holger Giese Hasso Plattner Institute at the University of Potsdam,

Germany
Reiko Heckel (Chair) University of Leicester, UK
Dirk Janssens University of Antwerp, Belgium
Barbara König University of Duisburg-Essen, Germany
Hans-Jörg Kreowski University of Bremen, Germany
Ugo Montanari University of Pisa, Italy
Mohamed Mosbah LaBRI, University of Bordeaux, France
Manfred Nagl RWTH Aachen, Germany
Fernando Orejas Technical University of Catalonia, Spain
Francesco

Parisi-Presicce
Sapienza University of Rome, Italy

John Pfaltz University of Virginia, Charlottesville, USA
Detlef Plump University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University Federal do Rio Grande do Sul, Brazil
Grzegorz Rozenberg University of Leiden, The Netherlands
Andy Schürr Technical University of Darmstadt, Germany
Gabriele Taentzer University of Marburg, Germany
Bernhard Westfechtel University of Bayreuth, Germany

Program Committee

Anthony Anjorin University of Paderborn, Germany
Paolo Baldan University of Padua, Italy
Gábor Bergmann Budapest University of Technology and Economics,

Hungary
Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Juan De Lara Autonomous University of Madrid, Spain
Juergen Dingel Queen’s University, Canada
Rachid Echahed CNRS and University of Grenoble, France
Holger Giese Hasso Plattner Institute at the University of Potsdam,

Germany
Annegret Habel University of Oldenburg, Germany
Reiko Heckel University of Leicester, UK

Berthold Hoffmann University of Bremen, Germany
Dirk Janssens University of Antwerp, Belgium
Barbara König University of Duisburg-Essen, Germany
Leen Lambers

(Co-chair)
Hasso Plattner Institute at the University of Potsdam,

Germany
Yngve Lamo Bergen University College, Norway
Mark Minas Bundeswehr University Munich, Germany
Mohamed Mosbah LaBRI, University of Bordeaux, France
Fernando Orejas Technical University of Catalonia, Spain
Francesco

Parisi-Presicce
Sapienza University of Rome, Italy

Detlef Plump University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University Federal do Rio Grande do Sul, Brazil
Andy Schürr Technical University of Darmstadt, Germany
Gabriele Taentzer Philipps University of Marburg, Germany
Jens Weber (Co-chair) University of Victoria, Canada
Bernhard Westfechtel University of Bayreuth, Germany
Albert Zündorf University of Kassel, Germany

Additional Reviewers

Atkinson, Timothy
Azzi, Guilherme
Dyck, Johannes
Farkas, Rebeka
Kluge, Roland

Nolte, Dennis
Peuser, Christoph
Sakizloglou, Lucas
Semeráth, Oszkár

X Organization

Introduction to Graph-Oriented Programming
(Keynote)

Olivier Rey

GraphApps, France
rey.olivier@gmail.com
orey.github.io/papers

Abstract. Graph-oriented programming is a new programming para-digm that
defines a graph-oriented way to build enterprise software, using directed
attributed graph databases as backend. Graph-oriented programming is inspired
by object-oriented programming, functional programming, design by contract,
rule-based programming and the semantic web. It integrates all those program-
ming paradigms consistently. Graph-oriented programming enables software
developers to build enterprise software that does not generate technical debt. Its
use is particularly adapted to enterprise software managing very complex data
structures, evolving regulations and/or high numbers of business rules.

Couplings in Enterprise Software

The way the software industry currently builds enterprise software generates a lot of
“structural and temporal couplings”. Structural coupling occurs when software and, in
particular, data structures, are implemented such that artificial dependencies are gen-
erated. A dependency is artificial if it occurs in the implementation but not in the
underlying semantic concepts. Temporal couplings are artificial dependencies gener-
ated by holding several versions of business rules in the same program, those rules
being applicable to data that are stored in the last version of the data structures.

Those couplings are at the very core of what is commonly called “technical debt”.
This debt generates over-costs each time a software evolves. Generally, the require-
ments change, the software is partially redesigned to accommodate the modification,
the data structures evolve, the existing data must be migrated, and all programs must be
non-regressed. In order to implement a small modification in an enterprise software, a
change in regulation for instance, overcoming the technical debt may represent up to
90–95% of the total workload [5, 6].

The software industry has, for a long time, identified the costs associated to
technical debts, and in particular those costs seem to grow exponentially with time [5].
That means that the productivity of any maintenance team of fixed size will constantly
decrease throughout the evolution process. In order to address this core issue of
enterprise software, a lot of engineering-oriented work-arounds can be found: design
patterns that are supposed to enhance software extensibility [1], software architecture
practices that define modules and layers inside an enterprise software [2, 4], or best

http://orcid.org/0000-0003-4462-3712

practices for software refactoring to reduce the costs of the refactoring phase itself [3].
However, every software vendor knows that the core problem of the technical debt has
not been solved.

Graph-Oriented Programming

Graph-oriented programming is meant as an alternative programming paradigm not
collecting technical debts. This paradigm is based on three concepts: (1) Using directed
attributed graph databases to store the business entities without storing their relation-
ships in the entities themselves, i.e. there are no foreign keys; (2) Designing programs
so that the knowledge about relationships between entities (business nodes) is captured
in functional code located “outside” of the nodes, encapsulated in graph transformation
rules; (3) Using best practices in graph transformation design to guarantee a minimal or
even no generation of technical debt. This programming paradigm can be applied using
an object-oriented or functional programming language.

The expected advantages of using graph-oriented programming are multiple:
reusability of software is increased due to less software dependencies; multiple views
of the same data can be implemented in the same application; multiple versions of data
structures and business rules can cohabit, meaning that the software and the data can be
timelined; software maintenance can be done by adding new software rather than by
modifying existing software.

At last, graph-oriented programming enables to build a different kind of enterprise
software that proposes, through the use of a graph-oriented navigation, a new user
experience, closer to our mental way of representing things.

The Approach Taken at GraphApps

At GraphApps, we developed a graph-oriented designer in Eclipse whose purpose is to
model node and relationship types, as they occur in business applications, and to group
them in semantic domains. Code generators, coupled to the designer, generate
parameterized web pages proposing a default view of defined types of business entities.
For each semantic domain, an independent jar file is generated. In addition, we
developed a graph-oriented web framework, which loads the jar files and enables us
to integrate them in the graphical web framework. All domains can be integrated
without introducing any new code dependency. Each domain may include custom
code, in order to implement graph transformations, web page modifications, or new
pages. Moreover, the framework proposes reusable components that offer generic
reusable mechanisms such as business node classification (every business node can be
referenced in a tree of shared folders), business node timelines, navigation history,
personalized links between business nodes, or alternate navigation.

Those tools support a quick prototyping of large and complex applications, the
implementation of time-based business rules, and the cooperative work of several
teams collaborating to the same core model. The way the code is organized enables us
to modify the behavior of the core system, without having to modify existing code,

XII O. Rey

migrating data, or performing non-regressing testing. We have used this set of tools for
many business prototypes and we are using it currently to build a complete innovative
aerospace maintenance information system (composed by many semantic domains)
from scratch.

Conclusion

The paradigm of graph-oriented programming enables us to build a new generation of
enterprise software that will be much easier to maintain and that can address the high
complexity of business entity structures and their life cycles, as well as time-sensitive
business rules. This paradigm may be used to rewrite a huge number of enterprise
software in the coming decades in order to decrease drastically the maintenance costs,
to enhance the capability of personalization of the software and to create new user
experiences by proposing more intuitive ways to navigate within the software.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object Oriented Software. Addison-Wesley (1994)

2. Buschmann, F.: POSA Volume 1 - A System of Patterns. Wiley (1996)
3. Fowler, M.: Refactoring. Addison-Wesley (1999)
4. Alur, D.: Core J2EE Patterns, 2nd edn. Prentice-Hall (2003)
5. Nugroho, A., Joost, V., Tobias, K.: An empirical model of technical debt and interest. In:

Proceedings of the 2nd Workshop on Managing Technical Debt. ACM (2011)
6. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its man-

agement. J. Syst. Softw. 101, 193–220 (2015)

Introduction to Graph-Oriented Programming (Keynote) XIII

Contents

Graph Languages

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 3
Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye

Synchronous Hyperedge Replacement Graph Grammars. 20
Corey Pennycuff, Satyaki Sikdar, Catalina Vajiac, David Chiang,
and Tim Weninger

CoReS: A Tool for Computing Core Graphs via SAT/SMT Solvers 37
Barbara König, Maxime Nederkorn, and Dennis Nolte

Graph Transformation Formalisms

Graph Surfing by Reaction Systems . 45
Hans-Jörg Kreowski and Grzegorz Rozenberg

Probabilistic Graph Programs for Randomised
and Evolutionary Algorithms . 63

Timothy Atkinson, Detlef Plump, and Susan Stepney

Graph-Rewriting Petri Nets . 79
Géza Kulcsár, Malte Lochau, and Andy Schürr

Parallel Independence and Conflicts

On the Essence and Initiality of Conflicts. 99
Guilherme Grochau Azzi, Andrea Corradini, and Leila Ribeiro

Characterisation of Parallel Independence in AGREE-Rewriting 118
Michael Löwe

Equivalence and Independence in Controlled Graph-Rewriting Processes 134
Géza Kulcsár, Andrea Corradini, and Malte Lochau

Graph Conditions and Verification

Verifying Graph Transformation Systems with Description Logics 155
Jon Haël Brenas, Rachid Echahed, and Martin Strecker

OCL2AC: Automatic Translation of OCL Constraints to Graph Constraints
and Application Conditions for Transformation Rules 171

Nebras Nassar, Jens Kosiol, Thorsten Arendt, and Gabriele Taentzer

Author Index . 179

XVI Contents

	Foreword
	Preface
	Organization
	Introduction to Graph-Oriented Programming (Keynote)
	Contents

