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Abstract. Uncertainty is an inherent property of any measure or es-
timation performed in any physical setting, and therefore it needs to
be considered when modeling systems that manage real data. Although
several modeling languages permit the representation of measurement
uncertainty for describing certain system attributes, these aspects are
not normally incorporated into their type systems. Thus, operating with
uncertain values and propagating uncertainty are normally cumbersome
processes, difficult to achieve at the model level. This paper proposes an
extension of OCL and UML datatypes to incorporate data uncertainty
coming from physical measurements or user estimations into the models,
along with the set of operations defined for the values of these types.

1 Introduction

It has been claimed that the expressiveness of a model is at least as important
as the formality of its expression [19]. This expressiveness is determined by the
suitability of the language for describing the concepts of the problem domain or
for implementing the design. While in software engineering there exists a variety
of modeling languages tailored at addressing different problems, they may not
be well suited for capturing some key aspects of the real world [3,17,27], and in
particular for managing data uncertainty in a natural manner. In this respect, the
emergence of Cyber-Physical Systems (CPS) [3] and the Internet of Things (IoT),
as examples of systems that have to interact with the physical world, has made
evident the need to faithfully represent some extra-functional properties of the
modeled systems and their elements, as well as to overcome current limitations
of existing modeling languages and tools.

One aspect of particular relevance is related to the uncertainty of the at-
tribute values of the modeled elements, specially when dealing with certain qual-
ity characteristics such as precision, performance or accuracy. Data uncertainty
can come from different reasons, including variability of input variables, numer-
ical errors or approximations of some parameters, observation errors, measure-
ment errors, or simply lack of knowledge of the true behavior of the system or its
underlying physics [12]. On other occasions estimations are needed because the
exact values cannot be obtained since the associated properties are not directly
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measurable or accessible, values are too costly to measure, or simply because
they are unknown.

In a previous paper [28] we presented an extension of the OCL/UML datatype
Real to deal with measurement uncertainty of numerical values, by incorporating
their associated uncertainty [12,13]. However, we soon realized that this was not
enough: data uncertainty rapidly extends to all OCL/UML datatypes since it is
not just a matter of propagating the uncertainty through the arithmetical oper-
ations, but also of dealing with the uncertainty when we compare two uncertain
numbers, or need to make a decision about a collection of elements. This requires
the definition of uncertain Booleans—values that are true or false with a given
probability (level of confidence). Similarly, integers should also be endowed with
uncertainty, e.g. when they are used to represent timestamps in milliseconds,
and we need to deal with imprecise clocks. This extends to collections too (e.g.,
a forAll statement in a set of uncertain values), and to datatypes operations.

This paper shows how measurement uncertainty can be incorporated into
OCL [21] primitive data types and their collections (and hence into UML [23],
since both languages share the same primitive types), by defining super-types for
them, as well as the set of operations defined on the values of these types. Both
analytical and approximate algorithms have been developed to implement these
operations. We provide a Java library and a native implementation in USE [9,10].

This paper is structured as follows. First, Section 2 briefly introduces the
concepts related to measurement uncertainty that will be used throughout the
paper. Then, Section 3 describes our proposal and the algebra of operations on
uncertain values and the implementations we have developed for these opera-
tions. Section 4 illustrates some usage scenarios and applications of the proposal.
Section 5 compares our work to similar proposals. Finally, we conclude the paper
in Section 6 with an outlook on future work.

2 Background

Uncertainty is the quality or state that involves imperfect and/or unknown in-
formation. It applies to predictions of future events, estimations, physical mea-
surements, or unknown properties of a system [12].

Measurement uncertainty is the special kind of uncertainty that normally af-
fects model elements that represent properties of physical elements. It is defined
by the ISO VIM [14] as “a parameter, associated with the result of a measure-
ment, that characterizes the dispersion of the values that could reasonably be
attributed to the measurand.”

The Guide to the Expression of Uncertainty in Measurement (GUM) [12]
defines measurement uncertainty for Real numbers representing values of at-
tributes of physical entities, and states that they cannot be complete without
an expression of their uncertainty. Such an uncertainty is given by a confidence
interval, which can be expressed in terms of the standard uncertainty—i.e., the
standard deviation of the measurements for such value. Therefore, a real number
x becomes a pair (x , u), also noted x ± u, that represents a random variable X
whose average is x and its standard deviation is u. For example, if X follows a
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normal distribution N (x , u), we know that 68.3% of the values of X will be in
the interval [x − u, x + u].

The GUM framework also identifies two ways of evaluating the uncertainty
of a measurement, depending on whether the knowledge about the quantity X
is inferred from repeated measured values (“Type A evaluation of uncertainty”),
or scientific judgment or other information concerning the possible values of the
quantity (“Type B evaluation of uncertainty”).

In Type A evaluation of uncertainty, if X = {x1, . . . , xn} is the set of mea-
sured values, then the estimated value x is taken as the mean of these values,
and the associated uncertainty u as their experimental standard deviation, i.e.,
u2 = 1

(n−1)
∑n

i=1(xi − x )2 [12]. In Type B evaluation, uncertainty can also be

characterized by standard deviations, evaluated from assumed probability dis-
tributions based on experience or other information. For example, if we know
or assume that the values of X follow a Normal distribution, N (x , σ), then we
take u = σ. And if we can only assume a uniform or rectangular distribution
of the possible values of X , then x is taken as the midpoint of the interval,
x = (a + b)/2, and its associated variance as u2 = (b − a)2/12, and hence
u = (b − a)/(2

√
3) [12].

In addition to the measure or estimation of individual attributes, in general
we need to combine them to produce an aggregated measure, or to calculate a
derived attribute. For example, to compute the area of a rectangle we need to
consider its height and its width, combining them by multiplication. The indi-
vidual uncertainties of the input quantities need to be combined too, to produce
the uncertainty of the result. This is known as the propagation of uncertainty,
or uncertainty analysis.

Uncertainty can also apply to Boolean values. For example, in order to im-
plement equality and comparison of numerical values with uncertainty, the tra-
ditional values of true and false returned by boolean operators are no longer
enough. They now need to return numbers between 0 and 1 instead, representing
the probabilities that one uncertain value is equal, less or greater than other [20].
This leads to the definition of Uncertain Booleans, which are Boolean values ac-
companied by the level of confidence that we assign to them. This is a proper
supertype of Boolean and its associated operations. Note that this approach
should not be confused with fuzzy logic: although both probability and fuzzy
logic represent degrees of subjective belief, fuzzy set theory uses the concept
of fuzzy set membership, i.e., how much an observation belongs to a vaguely
defined set, whilst probability theory uses the concept of subjective probability,
i.e., the likelihood of an event or condition [16].

3 Extension of OCL and UML DataTypes

Our goal is to extend the OCL and UML languages by declaring new types able to
express uncertainty. The benefits are twofold. First, uncertainty can be expressed
in models, i.e., our approach allows the user to define and manipulate uncertainty
in a high-level and platform-independent way. Second, information at the model
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Fig. 1: OCL Types, from [21].

level can be transferred to standard algorithms and tools, so that these can also
manage uncertainty by dealing with complex types in their computations.

We propose to extend the OCL types, which are shown in Figure 1, with un-
certainty information. Of course, not all of them need such information, such
as types oclInvalid, oclAny, or oclVoid. Other types, such as Class and
Tuple, are user-defined and composed of other heterogeneous types that will
convey such information, so there is no need to extend them at this level.
Similarly for TemplateParameter types, which refer to generic types. There-
fore, we need to cover the primitive types (Real, Integer, Boolean, String,
and UnlimitedNatural), collections (Set, Bag, OrderedSet, and Sequence) and
messages. In this paper we focus on the primitive types, excluding String, and
on collections. Uncertainty in Strings, Messages and Enumerations—which are
datatypes both in OCL and UML—is of different nature, and therefore their
extension is left for future work.

3.1 Extension Strategy

In order to extend the OCL/UML primitive types, we apply subtyping [18]. We
say that type A is a subtype of type B (noted A <: B), if all elements of A
belong to B , and the behavior of operations of B , when applied to elements of
A, is the same as those of A [1], i.e., they respect behavioral subtyping [18]. If
A <: B , then we say that B is a supertype of A.

For instance, Integer is a subtype of Real because every Integer num-
ber can be seen as a Real number whose decimal part is zero. Besides, Real
operations, when applied to Integer numbers, behave as those of type Integer.

Then, for extending a primitive OCL datatype T we will define a supertype
that incorporates information about the uncertainty of the values of T, and
defines the operations for the extended type, which are also applicable to the
base type—i.e., the subtype. This uncertainty information will vary depending
on whether the values of the base type are numbers (types Real, Integer and
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Table 1: New OCL primitive types and their operations.
type operations

UReal

+, −, ∗, /, abs(), neg(), power(), sqrt(),

inv(), floor(), round(), <, ≤, >, ≥, =, <>,

uEquals(), uDistinct(), min(), max(),

toString(), toInteger(), toReal(), toUInteger()

UInteger

+, −, ∗, div, /, abs(), neg(), power(), sqrt(),

inv(), mod(), <, ≤, >, ≥, =, <>,

uEquals(), uDistinct(), min(), max()

toString(), toInteger(), toUReal(), toUInteger()

UUnlimitedNatural

+, ∗, div, /, mod, <, ≤, >, ≥, =, <>,

uEquals(), uDistinct(), min(), max(),

toString(), toInteger(), toUReal(), toUInteger()

UBoolean

not, and, or, xor, implies, equivalent,

=, <>, equalsC(), uEquals(), uDistinct(),

toString(), toBoolean(), toBooleanC()

UnlimitedNatural) or boolean values. In the first case, the uncertainty infor-
mation will record measurement uncertainty, and will be expressed as specified
in the GUM [12]. Thus, numbers of the extended types will be pairs (x , u), with
u the associated uncertainty (cf. Sections 3.2-3.4). Operations will respect the
subtyping relationship, ensuring safe-substitutability. In the case of booleans,
the uncertainty will be given by means of a real number between 0 and 1 that
represents the assigned confidence (cf. Section 3.5).

Table 1 shows the newly defined types and their operations. Besides, the
subtyping relationships (<:) among the numeric datatypes—both standard and
extended—are shown below:

UnlimitedNatural\{*} <: Integer <: Real

<
:

<
:

<
:

UUnlimitedNatural\{*} <: UInteger <: UReal

In addition, Boolean <: UBoolean, completing the relationships. To extend col-
lections we will specify them using the corresponding extended operations of
their element types. The following sections describe these extensions in detail.

3.2 Extending type Real

To represent real values with measurement uncertainty, we make use of type
UReal and the algebra of operations defined on the values of that type, which
we presented in our previous work [28]. Basically, the values of UReal are pairs of
Real numbers X = (x , u). They determine the expected value (x ) and associated
standard uncertainty (u) of a quantity X , as defined in Section 2. Real numbers
x are naturally injected into type UReal, corresponding to pairs (x , 0).

We have specified in OCL, and also implemented in Java, all the operations
on the values of type UReal, to allow modelers to use them for defining derived



6

(a) Representation of a = 2.0±0.3 and
b = 2.5± 0.25.

(b) Representation of c = 1.0±0.5 and
d = 1.25± 0.75.

Fig. 2: Graphical representation of UReal values.

attributes and for specifying operations and invariants in OCL and UML models.
Furthermore, to validate our proposal we have also extended the tool USE by
implementing the new types as native ones—see Section 3.7.

As an example, the following listing shows the specification of two of the
UReal operations3 :

context UReal : : add ( r : UReal ) : UReal
post : r e s u l t . x = s e l f . x + r . x and

r e s u l t . u = ( s e l f . u∗ s e l f . u + r . u∗r . u ) . sqrt ( )
context UReal : : mult ( r : UReal ) : UReal
post : r e s u l t . x = ( s e l f . x∗r . x ) and

r e s u l t . u = ( r . u∗r . u∗ s e l f . x∗ s e l f . x + s e l f . u∗ s e l f . u∗r . x∗r . x ) . sqrt ( )

In addition to the traditional comparison operations between uncertain reals
(<, ≤, >, etc.), which return a Boolean value, comparisons between real num-
bers with uncertainty should return uncertain booleans. To illustrate this need,
consider the graphical representation of two pairs of uncertain reals shown in
Figure 2. We can see that there is indeed an overlap (represented by the gray
area): it constitutes the probability that the two values are equal.

Then, given two UReal values x and y we define three real numbers (l , e, g)
that represent, respectively, the probability of x being less, equal or greater than
y . Of course, it is always the case that l +e +g = 1. For example, the triplet that
we obtain for values a and b (Fig. 2a) is the following: (0.893, 0.106, 1.11 ·10−16).
This means that a < b with probability 0.893; a = b with probability 0.106, and
a > b with a probability 1.11·10−16. Similarly, the triplet for c and d (Figure 2b)
is: (0.152, 0.754, 0.094). Note that these 3 numbers correspond to the three areas

3 Operations on basic datatypes normally use infix notation (e.g., x + y , a < b,
P and Q). This is the notation that we already support in our USE implementation
for the newly defined types (UReal, UBoolean, etc.), see Sect. 3.7. However, other
languages that we have used to implement these new types (e.g., Java) do not support
infix notation. Therefore, in the following we will use either an infix or prefix notation
(x.add(y), a.lt(b), P.and(Q)) for the operations of these types, depending on the
context and on the particular language used.
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in which the curve that represents the first of the values can be divided (this is
clearer in Figure 2b).

All this has been specified in OCL using an auxiliary operation on type UReal
called calculate(r:UReal) that returns a tuple with the triplet. With it, the
specification of comparison operations between UReal numbers is as follows (lt
and gt mean lower/greater than, le and ge mean lower/greater or equal than, b
and c conform the UBoolean type, as explained in Section 3.5).

context UReal : : lt ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c = s e l f . calculate ( r ) . l )

context UReal : : le ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c=l e t x : Tuple ( l : Real , e : Real , g : Real )=

s e l f . calculate ( r ) in x . l + x . e )
context UReal : : gt ( r : UReal ) : UBoolean

post : ( r e s u l t . b ) and ( r e s u l t . c=s e l f . calculate ( r ) . g )
context UReal : : ge ( r : UReal ) : UBoolean

post : ( r e s u l t . b ) and ( r e s u l t . c=l e t x : Tuple ( l : Real , e : Real , g : Real )=
s e l f . calculate ( r ) in x . g + x . e )

context UReal : : uEquals ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c = s e l f . calculate ( r ) . e )

context UReal : : uDistinct ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c = 1.0 − s e l f . uEquals ( r ) )

The complete OCL specifications of these types and operations, and their im-
plementation in SOIL [4]—an OCL extension that permits the execution of OCL
specifications for simulation purposes—is available from [2], together with the
two implementations in Java that we provide, depending on whether we assume
values are independent and normally distributed—and therefore a closed form
expression can be used for the calculations—or using Monte-Carlo simulations
in case variables follow arbitrary distributions.

Table 1 shows the set of operations defined for type UReal, including conver-
sion operations to other OCL datatypes (both standard and extended).

3.3 Extending type Integer

Type UInteger is the supertype of OCL type Integer that defines measure-
ment uncertainty. This is needed, for instance, when representing timestamps
of events, which are normally expressed in milliseconds, and may have some
uncertainty due to lack of clock accuracy.

This extension is straightforward. Every UInteger element is of the form
(n, u) with n an Integer value and u a Real value that represents the uncer-
tainty. The injection of any Integer value n into type UInteger is naturally
defined by (n, 0). In turn, the behavior of UInteger operations is defined by lift-
ing the operation to type UReal, and then projecting the corresponding result,
if needed. This, together with the subtyping relationship Integer <: Real ex-
isting in OCL, ensures the proper subtyping relationship between Integer and
UInteger.

3.4 Extending type UnlimitedNatural

An OCL UnlimitedNatural is either a non-negative Integer or a special unlim-
ited value (*) that represents the upper value of a multiplicity specification [21].
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First, we have that UnlimitedNatural\{*} <: Integer, that is, excluding
value *, unlimited naturals are just non-negative integers. This special value *

cannot be used in any arithmetic operation with unlimited naturals, but only
with comparison (including max and min) operations. Although subtraction is
not defined in OCL for unlimited naturals, it can be naturally defined as a partial
operation, and hence lifted to type Integer (and hence to Real).

The extension of UnlimitedNatural to UUnlimitedNatural consists in adding
a new component to every unlimited natural value, with the expression of its
uncertainty. The uncertainty of special value * will always be 0.

Operations on UUnlimitedNatural values not involving special value * are
defined by lifting them to type UInteger. Comparison operations need to con-
sider the particular case of special value * (internally represented by “−1”), lift-
ing the operation to the supertype if this value is not involved. For illustration
purposes, the following listing shows the OCL specifications of the comparison
operations between UUnlimitedNatural values.

uEquals ( r : UUnlimitedNatural ) : UBoolean
post : r e s u l t = i f ( s e l f . x<>−1) and ( r . x<>−1) then

s e l f . toUInteger ( ) . uEquals ( r . toUInteger ( ) )
else ( s e l f . x=−1) and ( r . x=−1)
endif

lt ( r : UUnlimitedNatural ) : UBoolean
post : i f ( s e l f . x<>−1) and ( r . x<>−1) then

r e s u l t=s e l f . toUInteger ( ) . lt ( r . toUInteger ( ) )
else ( r e s u l t . b = (( s e l f . x<>−1) or ( r . x=−1)) ) and ( r e s u l t . c=1.0)
endif

le ( r : UUnlimitedNatural ) : UBoolean
post : r e s u l t=s e l f . lt ( r ) . or ( s e l f . equals ( r ) )

gt ( r : UUnlimitedNatural ) : UBoolean
post : r e s u l t = not s e l f . le ( r )

ge ( r : UUnlimitedNatural ) : UBoolean
post : r e s u l t = not s e l f . lt ( r )

max ( r : UUnlimitedNatural ) : UUnlimitedNatural
post : r e s u l t = i f ( s e l f . x=−1) then s e l f

else i f ( r . x=−1) then r
else i f r . lt ( s e l f ) . toBoolean ( ) then s e l f else r endif
endif

endif
min ( r : UUnlimitedNatural ) : UUnlimitedNatural

post : r e s u l t = i f ( s e l f . x=−1) then r
else i f ( r . x=−1) then s e l f

else i f r . lt ( s e l f ) . toBoolean ( ) then s e l f else r endif
endif

endif

3.5 Extending type Boolean

Type UBoolean is the supertype for type Boolean that adds uncertainty to its
values. In this case, the uncertainty does not refer to measurement uncertainty,
but to confidence. Thus, a UBoolean value is a pair (b, c) where b is a boolean
value (true, false) and c is a real number in the range [0..1], representing the
confidence that b is certain. Boolean values true and false are injected into
the supertype as (true, 1) and (false, 1), respectively.
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A property of this representation is that (b, c) = (¬b, 1−c) for every boolean
value b. Then, in its internal representation we will use a canonical form, always
taking b the value of true and c the corresponding confidence. Using this canon-
ical form, a true value with 95% confidence is represented as (true, 0.95) and a
false value with 95% confidence as (true, 0.05).

The operations supported by type UBoolean extend those of type Boolean,
as defined by OCL [21]. We have defined the basic (not, and and or) and sec-
ondary operations (implies, equivalent and xor) of the traditional Boolean
algebra, extending them with uncertainty. Assuming all values are independent,
the following listing shows the specification of all the UBoolean type operations.

not ( ) : UBoolean
post : ( r e s u l t . b ) and

( r e s u l t . c = i f s e l f . b then 1− s e l f . c else s e l f . c endif )

and( b : UBoolean ) : UBoolean
post : l e t C : Real = ( s e l f . c ∗ b . c ) in ( r e s u l t . b ) and

( r e s u l t . c=i f ( s e l f . b and b . b ) then C else (1−C ) endif )

or ( b : UBoolean ) : UBoolean
post : l e t C : Real = ( s e l f . c + b . c − ( s e l f . c ∗ b . c ) ) in

( r e s u l t . b ) and
( r e s u l t . c = i f ( s e l f . b or b . b ) then C else (1−C ) endif )

implies ( b : UBoolean ) : UBoolean
post : l e t C : Real = ( s e l f . c + b . c − ( s e l f . c ∗ b . c ) ) in

( r e s u l t . b ) and
( r e s u l t . c = i f ( s e l f . b implies b . b ) then C else (1−C ) endif )

equivalent ( b : UBoolean ) : UBoolean
post : l e t C : Real = ( s e l f . c + b . c − ( s e l f . c ∗ b . c ) ) in

( r e s u l t . b ) and
( r e s u l t . c = i f ( s e l f . b implies b . b ) and ( b . b implies s e l f . b )

then C else (1−C ) endif )

xor ( b : UBoolean ) : UBoolean
post : r e s u l t = s e l f . uEquivalent ( b ) . not ( )

equals ( b : UBoolean ) : Boolean = ( s e l f . b=b . b ) and ( s e l f . c=b . c ) or
( s e l f . b=not b . b ) and ( s e l f . c=1−b . c )

equalsC ( b : UBoolean , c : Real ) : Boolean =
( s e l f . b=b . b ) and ( ( s e l f . c−b . c ) . abs ( )<=1−c )

distinct ( b : UBoolean ) : Boolean = not ( s e l f . equals ( b ) )

toBoolean ( ) : Boolean =
i f ( s e l f . c>=0.5) then ( s e l f . b ) else (not s e l f . b ) endif

toBooleanC ( c : Real ) : Boolean =
i f ( s e l f . c>=c ) then ( s e l f . b ) else (not s e l f . b ) endif

We have kept ‘=’ (equals()) and ‘<>’ (distinct()) operations with their
usual semantics, that is, two UBoolean elements are the same if their boolean
and confidence values match. We have also extended the equals() operation
with the possibility of indicating a confidence threshold that both UBoolean

values are equal. Other identity operations (uEquals(), uDistinct()) compare
two UBoolean values, returning another UBoolean. Finally, some conversion op-
erations allow UBoolean values to be converted into Boolean values, either ap-
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proximately, if the confidence is greater than or equal to 0.5, or by indicating a
threshold for the confidence.

We have also specified an alternative implementation of these operations, in
case no assumption can be made about the independence of the variables in a
boolean expression. It is based on the Monte-Carlo simulation method proposed
in [13] for Type-A measurement uncertainty in real numbers, adapted to boolean
values. Basically, every UBoolean value contains a sequence of Boolean values
that represent the sample obtained when measuring that value. Operations are
performed on the samples, and then b and c become just derived values. An
excerpt of such specification, showing only the first two operations, is shown in
the listing below. Note that an additional invariant, at the end of the listing,
requests that all samples should be of the same size.

class UBoolean_A
-- canonical form : triplets ( sample [] , true ,c) , with :
-- sample : the set of measured values obtained for self
-- c: the confidence that self is true

attributes
sample : Sequence ( Boolean )
b : Boolean derive : true
c : Real derive : s e l f . sample−>count ( true ) / s e l f . sample−>s ize ( )

not ( ) : UBoolean_A
post : ( Sequence { 1 . . s e l f . sample−>s ize}−>forAll ( i |

r e s u l t . sample−>at ( i )=not s e l f . sample−>at ( i ) ) )
and( b : UBoolean_A ) : UBoolean_A

post : ( Sequence { 1 . . s e l f . sample−>s ize}−>forAll ( i |
r e s u l t . sample−>at ( i )=( s e l f . sample−>at ( i ) and b . sample−>at ( i ) ) ) )

. . .
context UBoolean_A inv SameSampleSize :

UBoolean_A . allInstances−>forAll ( u1 , u2 | u1 . sample−>s ize=u2 . sample−>s ize )

Similar specifications (and their corresponding implementations in Java) are
also available for the rest of the extended types.

3.6 Extending OCL collections

OCL collections can be easily extended based on the extended operators for
primitive datatypes. The following listing shows the specification of all collection
operations. Those that return a UBoolean value incorporate a ‘u’ at the start of
their name, to distinguish them from their boolean versions

source−>uForAll ( e | P ( e ) ) : UBoolean
: := source−>iterate ( e , acc : UBoolean=UBoolean ( true , 1 ) | acc .and( P ( e ) ) )

source−>uExists ( e | P ( e ) ) : UBoolean
: := source−>iterate ( e , acc : UBoolean=UBoolean ( true , 0 ) | acc . or ( P ( e ) ) )

source−>uIncludes ( e ) : UBoolean
: := source−>iterate ( v , acc : UBoolean=UBoolean ( true , 0 ) |

i f v . uEquals ( e ) . c > acc . c then v . uEquals ( e ) else acc endif )

source−>uIncludesAll ( collection ) : UBoolean
: := collection−>uForAll ( e | source−>uIncludes ( e ) )

source−>uExcludes ( e ) : UBoolean
: := source−>uForAll ( v | v . uEquals ( e ) . not ( ) )

source−>uExcludesAll ( collection ) : UBoolean
: := collection−>uForAll ( e | source−>uExcludes ( e ) )
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source−>uSelect ( P ( ) : UBoolean ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBoolean ( ) then acc−>including ( v ) else acc endif )

source−>uSelect ( P ( ) : UBoolean , c :Real ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBooleanC ( c ) then acc−>including ( v ) else acc endif )

source−>uReject ( P ( ) : UBoolean ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBoolean ( ) then acc−>excluding ( v ) else acc endif )

source−>uReject ( P ( ) : UBoolean , c :Real ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBooleanC ( c ) then acc−>excluding ( v ) else acc endif )

source−>uCount ( e ) : Integer
: := source−>iterate ( v , acc : Integer=0 |

i f v . uEquals ( e ) . toBoolean ( ) then acc + 1 else acc endif )

source−>uCountC ( e , c ) : Integer
: := source−>iterate ( v , acc : Integer=0 |

i f v . uEquals ( e ) . toBooleanC ( c ) then acc + 1 else acc endif )

source−>uOne ( P ( ) : UBoolean ) : Boolean
: := source−>uSelect ( e | P ( e ) )−>size ( )=1

source−>uOneC ( P ( ) : UBoolean , c :Real ) : Boolean
: := source−>uSelect ( e | P ( e ) . toBooleanC ( c ) )−>size ( )=1

source−>uIsUnique ( P ( ) : UBoolean ) : UBoolean
: := source−>uForAll ( e | source−>uForAll ( v | e<>v implies

P ( e ) . uEquals ( P ( v ) . not ( ) ) ) )
source−>sum ( ) : UReal
: := source−>iterate ( v , acc : UReal=UReal (0 , 0 ) | acc . add ( v ) )

3.7 Implementation in USE

USE [9] is a modeling tool that allows the validation of OCL and UML models
by means of executing the UML models and checking its OCL constraints. The
tool is open-source and distributed under a GNU General Public License. To
validate our proposal we have extended the OCL/UML language in USE by
adding the previously described uncertain types as basic primitive data types,
as well as their native operations, so they become available to any OCL/UML
modeler. An example of how the new types can be effectively used is illustrated
in Section 4. The extended tool can be downloaded from our website4.

4 Applications

To illustrate our proposal, let us consider the system described by the metamodel
shown in Figure 3. It is composed of people, trains and stations. Both persons
and trains move towards stations. For simplicity, we assume they all move in one
single direction. Monitors observe their movements, and record their last two
positions and the time in which they were observed. The speed is automatically

4 http://atenea.lcc.uma.es/downloads/uncertainOCLTypes/use-5.0.0_

extended.zip

http://atenea.lcc.uma.es/downloads/uncertainOCLTypes/use-5.0.0_extended.zip
http://atenea.lcc.uma.es/downloads/uncertainOCLTypes/use-5.0.0_extended.zip
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Fig. 3: UML Class Diagram for Train Example.

calculated from this information, as well as the expected time to arrive at the
station. For a person it is also important to know if she will be able to catch her
target train, i.e., reach the station at least 3 seconds before the train does. All
these calculations can be specified by means of OCL expressions:

context MovingObject : : speed :Real
derive : ( self . current . position−self . previous . position ) /

( self . current . time−self . previous . time )

context MovingObject : : timeToStation : Real
derive : ( self . headsTo . position−self . current . position ) / self . speed

context Person : : arrivesOnTime :Boolean
derive : ( self . timeToStation + 3) <= self . targetTrain . timeToStation

Figure 4 shows a UML object diagram with an example of such a system,
using conventional UML datatypes Real and Boolean.

Fig. 4: UML Object Diagram with Real and Boolean types.

Note, however, that in practice all these attributes and operations are subject
to uncertainty: positions and times are never 100% precise, and this imprecision
is propagated to derived values and estimated times. For example, suppose our
positioning system is correct up to one centimeter, and our clock has a precision
of 1 second. This can be captured in our model by simply updating the types
of Real and Boolean variables to UReal and UBoolean, respectively (this was
already showed in Figure 3).
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Fig. 5: UML Object Diagram with Uncertain types.

Figure 5 shows an object diagram with uncertain variables. Those variables
take into account the measurement uncertainty in the observations, and propa-
gate it through the computations. We can see how the expected train and user
arrival times at the station are T = 44.560 ± 10.581 and M = 40.045 ± 5.704,
respectively, and therefore their difference is T −M = −4.515± 12.374. Using a
UBoolean comparison operation, M ≤ T = (true, 0.887), which means that the
user will be able to arrive on time to catch the train with a probability of 0.887.
This is much more realistic than the first model, which probably was too näıve
to be of real use. Something worth noticing is that we only had to change the
types of the variables; all the OCL expressions that were used to compute the
values of derived attributes remained exactly the same.

5 Related Work

The need to represent and manipulate physical values in software models is
emerging, in particular units or real-time properties of cyber-physical systems [27].
For example, given that timing values are by nature uncertain (they are very
often estimates and/or measured by means of monitoring), the real-time commu-
nity is used to represent probability distributions and intervals for timing prop-
erties, and their influence is evident in the MARTE Profile [22] and SysML [24].
However, neither MARTE nor SysML support operations for performing calcu-
lations with these values, they remain at the descriptive level.

Similarly, in [31], the authors propose a conceptual model, called Uncer-
tum, which is supported by a UML profile (UUP, the UML Uncertainty Profile)
that enables including uncertainty in test models. Uncertum is based on the U-
Model [32], extending it for testing purposes. UUP is a very complete profile that
covers all different kinds of uncertainties, in particular measurement uncertainty.
Again, their focus, testing, is slightly different from ours, and they only need to
represent uncertainty but not to perform operations with it, and therefore they
also remain at a descriptive level.

Other works on Business Process Models (e.g., [15]) also consider uncertainty
when modeling the arrival time of clients, the availability of some resources or
the duration of some tasks. These works use probabilistic mass functions for
modeling the values of the corresponding attributes. We have preferred to use the
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way defined by the GUM [12,13]. Apart from being simpler and widely adopted
by other engineering disciplines, it has the main benefit of permitting operations
on variables that do not follow any particular probabilistic distribution.

The work in [30] defines an XML-based modeling language for measurement
uncertainty evaluation based on the GUM, and a simulation framework for it.
This work can be in principle considered closely related to our proposal, but
the fact that it is not integrated with the type system of a mainstream model-
ing language (such as OCL or UML), and its low-level syntax (based on plain
XML) hindered its usability. Similarly, the work in [11] defines a datatype that
incorporates measurement uncertainty and provides some libraries to perform
computations with its values. The integration of these works with OCL/UML
models is not straightforward, and therefore their adoption and usage by UML
modelers might be limited. To the best of our knowledge these works are more
closely related to the mathematical libraries and tools already existing [29] for
propagating measurement uncertainty and operating with uncertain values, than
to our work.

Other works deal with model uncertainty, but focusing on aspects differ-
ent from the ones we have described here. For instance, on the uncertainty on
the models themselves and on the best models to use depending on the sys-
tem properties that we want to capture [19]. Other works deal with the uncer-
tainty of the design decisions, of the modeling process, or of the domain being
modeled [5,6,7,8,26]. We depart from them since we are concerned with the un-
certainty of the values of the quantities being measured, which is a different
problem.

Finally, the OMG defined the Structured Metrics Meta-model (SMM) [25],
which is part of the Architecture Driven Modernization (ADM) effort, and aims
at representing measurement information related to software, its operation and
design. The SMM is a specification for the definition of measures and the rep-
resentation of their measurement results, including uncertainty, independently
of the representation of the measured entities. In this sense, our proposal can
be considered as a refinement of the SMM metamodel, particularizing it to the
domain of OCL and UML datatypes.

6 Conclusion and Future Work

In this paper we have focused on representing and managing measurement un-
certainty in OCL and UML software models, something required in order to
precisely capture and manipulate some of the essential quality properties of any
physical system. We have extended the OCL datatypes and their related op-
erations with uncertainty information. OCL and Java libraries have also been
developed to implement the type and its operations in MDE settings. Our im-
plementation is available on [2].

This work opens several interesting lines of research that we would like to
explore next. First, we would like to analyze how uncertainty could be added to
those OCL datatypes not covered here, namely Strings and Enumerations. As
mentioned earlier, the nature of their uncertainty seems to be rather different
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from the rest. Second, we would like to provide mappings from our high-level
OCL/UML specifications to other specification and simulation languages and
tools, in particular Modelica and Simulink. The objective is to achieve a stepwise
refinement heterogeneous specification and simulation process, whereby high-
level specifications (and hence more lightweight) can be progressively refined into
more concrete, complete (and more complex) specifications. Finally, we would
like to further validate our proposal with different kinds of examples, checking
the expressiveness and applicability of this type of specifications.
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