Skip to main content

DTI Segmentation Using Anisotropy Preserving Quaternion Based Distance Measure

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Abstract

In brain research, the second order tensor model of the diffusion tensor imaging (DTI) encodes diffusion of water molecules in micro-structures of tissues. These tensors are real matrices lying in a non-linear space enjoying the Riemannian symmetric space structure. Thus, there are natural intrinsic metrics there, together with their extrinsic approximations. The effective implementations are based on the extrinsic ones employing their vector space structure. In processing DTI, the Log-Euclidean (LogE) metric is most popular, though very far from optimal. The spectral decomposition approach yields the distance measures which respect the anisotropy much better. In the present work, we propose to use the spherical linear interpolation (slerp-SQ) which performs much better than the LogE one and provides better interpolation of geodesics than the spectral-quaternion one. We have implemented the localized active contour segmentation method for these metrics, providing much better handling of the inhomogeneity of the data than global counterpart.

Sumit Kaushik has been supported by the grant MUNI/A/1138/2017 of Masaryk University, Jan Slovak gratefully acknowledges support from the Grant Agency of the Czech Republic, grant Nr. GA17-01171S.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Brain Image Source: http://brainimaging.waisman.wisc.edu/~chung/DTI.

References

  1. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  2. Sethian, J.: Level Set Methods and Fast Marching Methods. Springer, New York (1999)

    MATH  Google Scholar 

  3. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  4. Yezzi, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 898–903 (1999)

    Google Scholar 

  5. Brox, T., Cremers, D.: On the statistical interpretation of the piecewise smooth Mumford-Shah functional. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 203–213. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72823-8_18

    Chapter  Google Scholar 

  6. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. Presented at the computer vision and pattern recognition, June 2007

    Google Scholar 

  7. Piovano, J., Rousson, M., Papadopoulo, T.: Efficient segmentation of piecewise smooth images. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 709–720. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72823-8_61

    Chapter  Google Scholar 

  8. An, J., Rousson, M., Xu, C.: \(\Gamma \)-convergence approximation to piecewise smooth medical image segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 495–502. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_60

    Chapter  Google Scholar 

  9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1987)

    Article  Google Scholar 

  10. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  11. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  12. Lankton, S., Melonakos, J., Malcolm, J., Dambreville, S., Tannenbaum, A.: Localized statistics for DW-MRI fiber bundle segmentation. In: Proceedings of 21st CVPR Workshops, pp. 1–8 (2008)

    Google Scholar 

  13. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin-echo. J. Magn. Reson., Ser. B 103(3), 247–254 (1994)

    Article  Google Scholar 

  14. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours Int. J. Comput. Vision 22(1), 61–79 (1997)

    Article  Google Scholar 

  15. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  16. Pennec, X., Fillard, P., Ayache, N.: A Riemann framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)

    Article  Google Scholar 

  17. Bhatia, R.: On the exponential metric increasing property. Linear Algebra Appl. 375, 211–220 (2003)

    Article  MathSciNet  Google Scholar 

  18. Skovgaard, L.: A Riemann geometry of the multivariate normal model. Scand. J. Stat. 11, 211–223 (1984)

    MATH  Google Scholar 

  19. Tschumperle, D., Deriche, R.: Diffusion tensor regularization with constraints preservation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. 948–953 (2001)

    Google Scholar 

  20. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O., Lehericy, S., Ugurbil, K.: A Riemannian approach to diffusion tensor images segmentation. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 591–602. Springer, Heidelberg (2005). https://doi.org/10.1007/11505730_49

    Chapter  Google Scholar 

  21. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  22. Collard, A., Bonnabel, S., Phillips, C., Sepulchre, R.: An anisotropy preserving metric for DTI processing. Int. J. Comput. Vis. Arch. 107(1), 58–74 (2014)

    Article  Google Scholar 

  23. Huynh, D.Q.: Metrics for 3D rotations: comparison and analysis. J. Math. Imaging Vis. 35(2), 155–164 (2009)

    Article  MathSciNet  Google Scholar 

  24. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA -2004. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27816-0_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kaushik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaushik, S., Slovak, J. (2018). DTI Segmentation Using Anisotropy Preserving Quaternion Based Distance Measure. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics