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Abstract. In this work, we present a deep learning framework for multi-
class breast cancer image classification as our submission to the Inter-
national Conference on Image Analysis and Recognition (ICIAR) 2018
Grand Challenge on BreAst Cancer Histology images (BACH). As these
histology images are too large to fit into GPU memory, we first propose
using Inception V3 to perform patch level classification. The patch level
predictions are then passed through an ensemble fusion framework in-
volving majority voting, gradient boosting machine (GBM), and logistic
regression to obtain the image level prediction. We improve the sensitiv-
ity of the Normal and Benign predicted classes by designing a Dual Path
Network (DPN) to be used as a feature extractor where these extracted
features are further sent to a second layer of ensemble prediction fusion
using GBM, logistic regression, and support vector machine (SVM) to re-
fine predictions. Experimental results demonstrate our framework shows
a 12.5% improvement over the state-of-the-art model.

1 Introduction

In the United States, breast cancer continues to be the leading cause of cancer
death among women of all races [1]. Studies have shown that improvement to
survival rate over the last decade can be attributed to early diagnosis and aware-
ness of better treatment options [2],[3],[4]. Common non-invasive screening test
includes clinical breast exam which involves a visual check of the skin and tissue
and a manual check for unusual texture or lump, mammography which requires
taking an x-ray image of the breast to look for changes, and breast MRI which
uses radio waves to obtain a detailed image inside the breast. Of the latter two
diagnostic modals, many computer-aided diagnosis (CAD) systems have been de-
veloped to assist radiologists in their effort to identify breast cancer in its early
stages [5]. On the other side of the screening toolbox are biopsies which are
minimally invasive procedures whereby tissue samples are physically removed
to be stained with hematoxylin and eosin (H&E) and visualized under a mi-
croscope. These histopathology slides allow pathologists to distinguish between
normal, non-malignant, and malignant lesions [11] to assist in their diagnosis.
However, even among trained pathologists the concordance between their unan-
imous agreement is a mere 75% [6]. This high degree of discord motivates the

ar
X

iv
:1

80
2.

00
93

1v
1 

 [
cs

.C
V

] 
 3

 F
eb

 2
01

8



development of automatic CAD systems using machine learning to assist these
professionals in their diagnosis.

From November 2017 to January 2018, the International Conference on Im-
age Analysis and Recognition (ICIAR) held the 2018 Grand Challenge on BreAst
Cancer Histology images (BACH) to solicit submissions of automatic image anal-
ysis systems for the task of four-class classification of breast cancer histology
images. Here we present a deep learning framework for the task of multi-class
breast cancer histology image classification. Our approach uses the Inception
(GoogLeNet) V3 [19] architecture to discriminate between invasive carcinoma,
in situ carcinoma, benign lesion, and normal tissue patches. We then fuse these
patch level predictions to obtain image level prediction using an ensemble frame-
work. Our system improves the sensitivity over the benign and normal classes
by using a Dual Path Network (DPN) [24] to extract features as input into a
second level ensemble framework involving GBM, SVM, and logistic regression.
Experimental results on a held out set demonstrate our framework shows a 12.5%
improvement over the state-of-the-art model.

2 Relate Work

Several works have been published in the area of applying machine learning algo-
rithms for cancer histology image detection and classification [12],[13],[14],[21].
In the specific area of breast cancer histopathology classification, the Came-
lyon 16 competition led to numerous new approaches utilizing techniques from
deep learning to obtain results comparable to highly trained medical doctors
[9],[10],[17]. The winning team used Inception V3 to create a tumor probability
heatmap and perform geometrical and morphological feature selection over these
heatmaps as input into a random forest classifier to achieve near 100% area un-
der the receiver operating characteristic curve (AUC) score [9]. However, this
competition involved only binary class prediction of tumor and normal whole
slide images. For 4-class breast cancer classification, Araujo et al. [11] published
a bespoke convolutional neural network architecture that achieved state-of-the-
art accuracy results and high sensitivity for carcinoma detection.

3 ICIAR2018 Grand Challenge Datasets and Evaluation
Metric

In this section, we describe the ICIAR2018 dataset provided by the organizers
for the subchallenge of multi-class breast cancer histology image classification
and the evaluation metric used to score submissions. The interested reader is
encouraged to refer to the competition page for details regarding the other sub-
challenge.

3.1 ICIAR2018 Dataset

The ICIAR2018 breast cancer histology image classification subchallenge consist
of Hematoxylin and eosin (H&E) stained microscopy images as shown in Table



1. The dataset is an extended version of the one used by Araujo et al. [11]. All
images were digitized with the same acquisition conditions, with resolution of
2040×1536 pixels and pixel size of 0.42µm×0.42µm. Each image is labeled with
one of four classes: i) normal tissue, ii) benign lesion, iii) in situ carcinoma and iv)
invasive carcinoma according to the predominant cancer type in each image. The
images were labeled by two pathologists who only provided a diagnostic from
the image contents without specifying the area of interest. There are a total
of 400 microscopy images with an even distribution over the four classes. We
randomly perform a 70%-20%-10% training-validation-test split. The training
and validation sets are used for model development while the test set is held out
and only used for evaluation.

Table 1. ICIAR2018 H&E Histopathology Dataset

Type Training Validation Test Total

Microscopy

normal 70 20 10

400
benign 70 20 10
in situ 70 20 10

invasive 70 20 10

3.2 Evaluation Metric

This challenge consists of automatically classifying H&E-stained breast cancer
histology images into four classes: normal, benign, in situ carcinoma and inva-
sive carcinoma. Performance on this challenge is evaluated based on the overall
prediction accuracy, i.e. the ratio of correct predictions over total number of
images.

4 Method

In this section, we describe our framework and approach to this problem of
multi-class breast cancer histology image classification.

4.1 Image-wise classification of microscopy images

Stain Normalization Pre-processing Stain normalization is a critically im-
portant step in the pre-processing of H&E stain images. It is known that cell
nucleus are stained with a large amount of pure hematoxylin and a small amount
of Eosin whereas cytoplasm is stained with a large amount of pure eosin and
small amount of hematoxylin [8]. Variations in H&E images can be attributed
to such factors as differences in lab protocols, concentration, source manufac-
turer, scanners, and even staining time [22]. These variations makes it difficult



for software trained on a particular stain appearance [23] therefore necessitates
careful preprocessing to reduce such variances.

Many methods have been proposed for stain normalization including [23],[7],[8]
that are based on color devolution where RGB pixel values are decomposed into
their stain-specific basis vectors. In addition to color information, Bejnordi et el.
takes advantage of spatial information to perform this deconvolution step [22],
however their approach currently only works for whole slide images.

In our framework, we utilized both Macenko [7], which used singular value
decomposition (SVD), and Vahadane normalizations [8], which used sparse non-
negative matrix factorization (SNMF), as part of our ensemble framework. This
was due to the fact that initial empirical results showed Macenko-normalized im-
ages obtained high sensitivity for invasive and in situ classes whereas Vahadane-
normalized images showed high sensitivity for benign and normal classes. Both
set of normalized datasets were normalized using ”iv001.tif” as the target image.
An example of both normalization schemes are shown in Fig. 1.

A B C D

Fig. 1. A target image, B original image, C image after Macenko normalization, D
image after Vahadane normaliztion.

Image-wise Classification Framework The microscopy classification frame-
work consists of a patch level classification stage, an image level heatmap post-
processing stage, and possibly a refinement stage, as depicted in Fig. 2. During
model training of the patch-based classifer, each patch input is of size 512×512.
We extracted 500 patches from each microscopy slide in the training and val-
idation sets for both Macenko-normalized and Vahadane-normalized datasets.
35 of those patches comes from sliding over the normalized microscopy image
with strides of 256 while the remaining patches were randomly sub-sampled. As
with the assumption used in [11], these patches are given the same label as the
original slide image with which they where obtained from.

A pretrained Inception V3 model [19], is modified to accept image patch of
this size and trained to discriminate between the four classes. At training time,
images data are dynamically augmented before being fed through the model.
Similar to the color perturbation scheme used in [10], brightness is perturbed
with a delta of 5/255, contrast with a delta of .05, saturation with a delta of
.05, and hue with a delta of 0.02. In addition to color perturbation, images were
randomly flipped vertically and/or horizontally, and randomly rotated by 90
degrees to obtain all eight valid orientations.



The Inception V3 model was fine-tuned on 4 GPUs (2 Nvidia Titan X GPUs
and 2 Nvidia GTX 1080Ti) where each GPUs receive a batch of 8 images. Model
is trained for 30 epochs with learning rates set as: 5e-5 for the bottom 5 convo-
lution layers, 5e-4 for the eleven inception modules, and 5e-2 for the top fully
connected layer. Learning rate was decreased by 0.95 every 2 epochs. The RM-
Sprop optimizer [18] with 0.9 momentum is used and the best performing model
on the validation set is saved.

At inference time for a single microscopy image, a heatmap tensor of size
[8 × 4 × 3 × 4] is obtained. The first dimension corresponds to the 8 valid ori-
entations of the image, the second dimension to the 4 classes, and the third
and fourth dimension corresponds to the spatial dimensions of the image using
non-overlapping patching.
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Fig. 2. The framework of image-wise classification. The normalized input image is
patched into twelve non-overlapping patches. 8 sets of these patches are generated
corresponding to the 8 valid orientations. These 8 sets of patches are passed through
the Inception (GoogLeNet) V3 model to generate a patch level heatmap probability
tensor. The heatmap tensor is then fused using majority voting (MV), gradient boosting
machine (GBM), and logistic regression (LR) across both macenko-normalized and
vahadane-normalized version of the input image. If the model predicts invasive or in
situ carcinoma, the model outputs this prediction. Otherwise the normalize images are
pass through the DPN network to extract features for a second fusing step involving
LR, GBM, and support vector machine (SVM) to output prediction for benign and
normal class.

Heatmap-based Post-processing Three data fusion strategies were investi-
gated for this competition. The first strategy involved finding the average prob-
abilities along the first dimension of the heatmap and then assigning labels to
each 3 × 4 patches corresponding to the most probable class, which we will call
the class map. From this 3 × 4 class map, a final label for the microscopy is
obtained by majority voting. The second and third strategies involved finding
the class map for each of the 8 orientation separately first, and then obtaining
a histogram of the classes across all 8 orientations. The histogram data is then
used to train two separate models: a logistic regression with L1 regularization



and a gradient boosting machine (GBM) classifier (num. of estimator=280, max
depth = 4, learning rate = .9) to ultimately classify the image similar to [16].
If the model predicts benign or normal, the vahadane-normalized image was
further passed through a refinement stage as will be describe in the next section.

Refinement model for Benign and Normal classes Since the Inception
model yielded low sensitivity for both normal and benign classes with many
interclass misclassification between these two classes, we proposed training a
slimed-down version of the dual path network (DPN) [24] to serve as a feature
extractor for use with Vahadane-normalized images. DPN was chosen due to
its compact size and having beneficial characteristics of both residual-like and
densenet-like architectures. Using the features extracted by the DPN, we train
three additional models: GBM, Support Vector Machine (SVM), and Logistic
regression with L1 for binary classification. The results for our entire pipeline is
presented below in Table 2.

5 Experimental Results

The performance of our framework on image-wise classification is shown below
in Table 2. As a baseline, we compare against Araujo et al. [11] which, although
using a smaller subset of this dataset, tested on a held-out set of roughly the same
size. Their best accuracy performance on this 4-class classification problem was
77.8%. Our framework achieves an accuracy score of 87.5%, a 12.5% improvement
over the baseline score. Even without the refinement model, our model offers a
6 % improvement over the baseline.

Table 2. Image-wise Classification Results

Accuracy
Validation Set Test Set

Macenko
normalization

MV 0.800 0.775
LR 0.750 0.775

GBM 0.775 0.775

Vahadane
normalization

MV 0.788 0.775
LR 0.763 0.775

GBM 0.750 0.800

Ensemble 0.825 0.825

Ensemble with refinement 0.838 0.875

Comparing the sensitivity by Araujo et al. [11], we see they achieved sen-
sitivities of 77.8 %, 66.7%, 88.9%, and 88.9% for normal, benign, in situ, and
invasive classes respectively. From Table 3, we showed higher sensitivity across
all four classes using our framework. Of noticeable improvement is the benign
class which we saw an almost 20% improvement. This validates our decision



to incorporate a binary class refinement phase specifically for the benign and
normal classes.

Table 3. Image-wise Test Set Contingency Table

Ground Truth

Prediction
invasive in situ benign normal sensitivity

invasive 9 0 1 0 0.90
in situ 0 10 0 0 1.00
benign 1 1 8 0 0.80
normal 0 0 2 8 0.80

6 Discussion

In this work we proposed a deep learning framework for the problem of multi-
class breast cancer histology image classification. To leverage the advances from
the computer vision field, we propose using the successful inception V3 model
for initial four-class classification. We propose a new ensemble scheme to fuse
patch probabilities for image-wise classification. To improve the sensitivity of
the benign and normal class, we propose a two-class refinement stage using a
dual path network to first extract features from the vahadane-normalized images
and then using gradient boosting machine, support vector machine, and logistic
regression to fuse all our predictions into a final result. Experimental results
on the ICIAR2018 Grand Challenge dataset demonstrates an improvement of
12.5% over the state-of-the-art system.

References

1. U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999-2014
Incidence and Mortality Web-based Report. Atlanta: U.S. Department of Health and
Human Services, Centers for Disease Control and Prevention and National Cancer
Institute; 2017. Available at: www.cdc.gov/uscs.

2. Saadatmand, Sepideh, et al. ”Influence of tumour stage at breast cancer detection
on survival in modern times: population based study in 173 797 patients.” bmj 351
(2015): h4901.

3. Berry, Donald A., et al. ”Effect of screening and adjuvant therapy on mortality from
breast cancer.” New England Journal of Medicine 353.17 (2005): 1784-1792.

4. de Gelder, Rianne, et al. ”The effects of populationbased mammography screening
starting between age 40 and 50 in the presence of adjuvant systemic therapy.”
International journal of cancer 137.1 (2015): 165-172.

5. Hadjiiski, Lubomir, Berkman Sahiner, and Heang-Ping Chan. ”Advances in CAD
for diagnosis of breast cancer.” Current opinion in obstetrics & gynecology 18.1
(2006): 64.



6. Elmore, Joann G., et al. ”Diagnostic concordance among pathologists interpreting
breast biopsy specimens.” Jama 313.11 (2015): 1122-1132.

7. Macenko, Marc, et al. ”A method for normalizing histology slides for quantitative
analysis.” Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE Interna-
tional Symposium on. IEEE, 2009.

8. Vahadane, Abhishek, et al. ”Structure-preserved color normalization for histological
images.” Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on.
IEEE, 2015.

9. Wang, Dayong, et al. ”Deep learning for identifying metastatic breast cancer.” arXiv
preprint arXiv:1606.05718 (2016).

10. Liu, Yun, et al. ”Detecting cancer metastases on gigapixel pathology images.”
arXiv preprint arXiv:1703.02442 (2017).

11. Arajo, Teresa, et al. ”Classification of breast cancer histology images using Con-
volutional Neural Networks.” PloS one 12.6 (2017): e0177544.

12. Nayak, Nandita, et al. ”Classification of tumor histopathology via sparse feature
learning.” Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium
on. IEEE, 2013.

13. Gorelick, Lena, et al. ”Prostate histopathology: Learning tissue component his-
tograms for cancer detection and classification.” IEEE transactions on medical imag-
ing 32.10 (2013): 1804-1818.

14. Xu, Yan, et al. ”Weakly supervised histopathology cancer image segmentation and
classification.” Medical image analysis 18.3 (2014): 591-604.

15. Ciompi, Francesco, et al. ”The importance of stain normalization in colorectal
tissue classification with convolutional networks.” arXiv preprint arXiv:1702.05931
(2017).

16. Hou, Le, et al. ”Patch-based convolutional neural network for whole slide tissue
image classification.” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016.

17. Bejnordi, Babak Ehteshami, et al. ”Diagnostic assessment of deep learning algo-
rithms for detection of lymph node metastases in women with breast cancer.” Jama
318.22 (2017): 2199-2210.

18. Tieleman, Tijmen, et al.: Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude (2012) 22.

19. Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. ”Going
deeper with convolutions.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1-9. 2015.

20. Otsu, Nobuyuki. ”A threshold selection method from gray-level histograms.” IEEE
transactions on systems, man, and cybernetics 9, no. 1 (1979): 62-66.

21. Wang, Wei, John A. Ozolek, and Gustavo K. Rohde. ”Detection and classification
of thyroid follicular lesions based on nuclear structure from histopathology images.”
Cytometry Part A 77.5 (2010): 485-494.

22. Bejnordi, Babak Ehteshami, et al. ”Stain specific standardization of whole-slide
histopathological images.” IEEE transactions on medical imaging 35.2 (2016): 404-
415.

23. Khan, Adnan Mujahid, et al. ”A nonlinear mapping approach to stain normal-
ization in digital histopathology images using image-specific color deconvolution.”
IEEE Transactions on Biomedical Engineering 61.6 (2014): 1729-1738.

24. Chen, Yunpeng, et al. ”Dual path networks.” Advances in Neural Information
Processing Systems. 2017.

http://arxiv.org/abs/1606.05718
http://arxiv.org/abs/1703.02442
http://arxiv.org/abs/1702.05931

	Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification

