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Abstract. The wireless capsule endoscopy has revolutionized early
diagnosis of small bowel diseases. However, a single examination has
up to 10 h of video and requires between 30–120min to read. Compu-
tational methods are needed to increase both efficiency and accuracy
of the diagnosis. In this paper, an evaluation of deep learning U-Net
architecture is presented, to detect and segment red lesions in the small
bowel. Its results were compared with those obtained from the literature
review. To make the evaluation closer to those used in clinical environ-
ments, the U-Net was also evaluated in an annotated sequence by using
the Suspected Blood Indicator tool (SBI). Results found that detection
and segmentation using U-Net outperformed both the algorithms used
in the literature review and the SBI tool.
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1 Introduction

Approximately 300,000 hospitalizations per year in the United States of America
are associated with gastrointestinal bleeding and in 5% of those cases it is not
possible to immediately identify the bleeding’s source [14]. The small bowel is one
of the major organs where bleeding from unknown sources occurs (also named as
Obscure Gastrointestinal Bleeding - OGIB). Full and direct visualization of the
small bowel is not possible through high endoscopy or colonoscopy, due to the
organ’s length and its morphological diversity [8]. To overcome this issue, direct
visualization of the small bowel through endoscopic methods with emphasis to
the Wireless Capsule Endoscopy (WCE), have greatly evolved in the last decades,
revolutionizing the knowledge and clinical approach of several pathologies [10].
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Recently, several Computer Aided Diagnostic (CAD) designs have been devel-
oped allowing for an automatic or semi-automatic lesion detection (e.g. polyps,
ulcers, tumors and bleeding). Extensive reviews of these CAD systems can be
found in [3,4,9]. Rapid Reader commercial software has been one of the most
used diagnostic support tool since it provides, amongst other tools, the Sus-
pected Blood Indicator (SBI), which identifies frames with possible red lesions
in the gastrointestinal (GI) tract, based on color. However, several studies have
shown that the results obtained using this tool are not completely satisfactory
[1,4,6,16].

Computational methods for automatic image processing and analysis, such
as smoothing filters, noise removal, contour detection or segmentation, can be
used to facilitate the detection of anomalies/pathologies and to homogenize the
response between different clinicians. Since 2012, Convolutional Neural Network
(CNN), commonly known as “deep learning”, started to present significantly
better results than previous methods, automatically extracting characteristics
from data and thus supporting new developments in CAD systems [9]. In this
paper, an evaluation of deep learning U-Net architecture is presented for detect-
ing and segmenting red lesions in the small bowel. Moreover, the comparison
between its results and those found in the literature review is also presented.

2 Deep Learning Approach

CNN is a technology for learning generic resources in computational tasks that
uses a hierarchy of computational layers and begins by mapping an input (image)
to obtain an output (class). The lower layers are composed by convolution, nor-
malization and pooling layers, alternating between each other, while the upper
layers are fully connected and correspond to traditional neural networks [9].

The model used in this study is the U-Net architecture, proposed by
Ronneberger et al. to segment images [7]. It is a CNN modification and presents
a U shape due to symmetrical form presented by the contracting path (the left
branch) and the expansive path (the right branch), as illustrated in Fig. 1.

Summarily, a repetitive pattern of convolution operation, followed by a Rec-
tified Linear Unit (ReLU) and a down-sampling process – with a step of 2 –
is performed in the contraction path. Regarding the expansive path, it includes
an up-sampling operation of the previously obtained feature map, followed by
a convolution (has the effect of halving the feature channels) and the concate-
nation with the characteristics map obtained in the contracting path. A final
convolutional layer is added to map feature vectors to the desired number of
classes [7]. The contraction path intents to capture context and the expanding
path allows an accurate feature location.

3 Datasets and Experiments

3.1 Datasets

For this study it was necessary to compile 2 custom datasets with frames from
the small bowel since, in the best of our knowledge, there is no publicly available
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Fig. 1. The architecture of U-Net, reproduced from [7]. Each blue box in this figure rep-
resents a multi-channel feature map. The data pass through the horizontal lines simul-
taneously. The deep blue arrows represent activation functions. (Color figure online)

Table 1. Datasets characterization.

Set 1 Set 2 Total

Lesion 1,131 439 1,570

No lesion 2,164 161 2,325

Total 3,295 600

dataset with annotated red lesions in Video Capsule Endoscopy (VCE) images
and with adequate size to train the U-Net architecture. The datasets character-
ization are presented in Table 1.

As criteria for compilation of Set 1, it was decided to have a dataset with
images as diverse as possible - from different cameras, such as MiroCam, Pill-
Cam SB1, SB2 and SB3 - and with different red lesions, such as angioectasias,
angiodysplasias, bleeding and others. It has 3,295 frames from which 1,131 have
lesions. This set has a similar size to other aforementioned works [5]. All lesions
were annotated manually. The images have 320 × 320 or 512 × 512 resolutions,
although they were all resampled to 512 × 512 when applied to the U-Net.

Figure 2 presents a frame and the respective annotation mask example. The
annotation process is subjective and very time consuming. For example, it is
difficult for a human being to rigorously annotate the smooth border of blood
diluted in small bowel fluids, which result in annotations with wide variability
and impacts the segmentation results.

For Set 2, it was decided to have a dataset with a sequence of 600 images
from a PillCam SB3 video to get an evaluation of the model closer to the clin-
ical reality. The set contains 73% of frames with red lesions, each one labelled
manually as Blood/Non-blood based on the human judgment for Ground Truth
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Fig. 2. a. Bleeding example; b. Manually annotated mask.

(GT) and on the result of the Given SBI to get an evaluation of the SBI tool in
the set1.

3.2 Evaluation Criteria

The metrics used to evaluate the U-Net performance in the detection process
are derived from the basic cardinalities of the confusion matrix, namely the true
positives (TP), the false positives (FP), the true negatives (TN) and the false
negatives (FN) [11]. These measures assume that there is an overlap between two
partitions, in this particular case the actual existence of red lesions in a given
image and the possibility of this being predicted through the proposed method.
From the aforementioned measures, one can obtain test validity indicators such
as Accuracy - ACC (1), True Positive Rate (Sensitivity) - TPR (2), True Negative
Rate (Specificity) - TNR (3):

ACC =
TP + TN

TP + FP + TN + FN
(1)

TPR =
TP

TP + FN
(2)

TNR =
TN

TN + FP
(3)

The ACC is defined as the portion of correctly classified elements to the
total number of elements. TPR is a quantification of the algorithm capacity to
correctly classify an image truly containing red lesions, i.e., it is the portion of
frames with lesion that had a positive classifier result. Analogously, the TNR is
a quantification of the algorithm capability in correctly classifying images truly
without red lesions, i.e., it is the portion that non-lesion frames will be classified
as normal by the classifier.

As segmentation metric the Dice Coefficient – DICE (4) was used [11]:

DICE =
2 · tp

2 · tp + fp + fn
(4)

1 At the time of submission these datasets were waiting for publication approval from
the Ethical Council. In case of approval it will be available at https://rdm.inesctec.
pt/dataset/nis-2018-003.

https://rdm.inesctec.pt/dataset/nis-2018-003
https://rdm.inesctec.pt/dataset/nis-2018-003
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The Dice coefficient is a relative metric that provides a similarity index
between predicted and ground truth segmentations. The tp are the total number
of pixels belonging to the lesion in both masks: predicted and ground truth. The
fp are the total number of pixels predicted as lesion but are not in the ground
truth mask. The fn are the total number of pixels predicted as not belonging to
lesion but are present in the ground truth mask.

3.3 Implementation Details

The U-Net network was trained from scratch with Set 1, which was split ran-
domly in 80% for training and 20% for validation, to detect and segment red
lesions. The training was made using Dice coefficient as cost function, in 3 cycles
of 120 epochs with the Adam optimizer. The learning rate was 1E-4, 1E-5 and
1E-6 in each cycle, respectively. The model evaluation was performed by com-
paring its predictions with the annotated masks, used as ground truth, based on
Sect. 3.2 evaluation metrics. The network was implemented in Python 2.7 and
all experiments were performed on a machine with an Intel Xeon CPU E5-2650
and 64 GB RAM. The U-Net was implemented using Keras with TensorFlow as
backend and was accelerated on an NVIDIA GTX-1080Ti GPU (11 GB on-board
memory).

4 Results and Discussion

The SBI tool and most of state of the art methods are used as blood detectors. So,
it was decided to evaluate the U-Net model - trained on Set 1 for segmentation
- as a detector and the results compared with state of the art bleeding detection
with datasets greater than 1,000 images, as showed in Table 2. The authors point
out that the relative comparison with other works is carried out under different
experimental conditions, since the datasets are different.

Table 2. Comparison between U-Net trained on Set 1 and state of the art bleeding
detection.

Author(s) Images/Patients ACC(%) TPR(%) TNR(%)

Sainju et al. [8] 1,500/3 93.00 96.00 90.00

Figueiredo et al. [2] 4,000/10 92.70 92.90 >90.00

Usman et al. [13] 8,500 92.00 94.00 91.00

Xiong et al. [15] 3,596/5 94.10 91.69 94.59

U-Net 3,295/>5 95.88 99.56 93.93

The U-Net model learned very well to detect red lesions, with only 1 FN frame
and 26 FP. Indeed, it has a very good accuracy (ACC = 95.88%), sensitivity
(TPR = 99.56%) and specificity (TNR = 93.93%), outperforming Xiong et al.
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Fig. 3. a. FN frame; b. FP frame example. (Color figure online)

work (the overall most precise present in the literature review) by 1.78% in
accuracy and in 7.87% in sensitivity. The specificity is lower 0.66% from the
Xiong et al work, but is still higher than other state of the art works. From the
analysis of the FN frames it was verified that these occur in lesions in which the
background presents similar colors as the one shown in Fig. 3a.

In the case of the 26 FP, in 15 of them the system predicted very small areas
that could be ignored, 12 of them appearing in between intestinal folds. Of the
remaining 11 cases, 7 are dubious, even after the system’s prediction result, since
they were manually annotated as not containing red lesions. However, the U-Net
considers them as having lesions and, in fact, it can be considered as correct.
Finally, the last 4 cases present one or several considerable areas, also located in
intestinal folds as can be seen in Fig. 3b.

The segmentation metric for red lesions was obtained from the evaluation of
the Set 1 TP frames by averaging the Dice coefficient (DICE = 87.08%). This rate
value is biased by the human manual ground truth segmentation in the smooth
border of diluted blood in small bowel fluids. In the literature, this result can be
compared with the study presented by Tuba et al. [12], that presents an average
value for DICE of 84%. In this case, the U-Net outperforms it in 3.08%.

According to Yung et al. [16], SBI showed high sensitivity (TPR = 98.8%) but
with low specificity (TNR = 64.0%) even for clinical scenarios for active bleeding.
For small bowel pathology with bleeding potential, it shows moderate sensitivity
(TPR = 55.3%) and specificity (TNR = 57.8%). To get a fair comparison, the
model was evaluated with 600 consecutive new frames belonging to the small
bowel and compared with SBI, Set 2, as can be seen in Table 3.

With 4 FN frames and 15 FP, the U-Net obtained a very good accuracy
(ACC = 96.83%) and an excellent sensitivity (TPR = 99.09%), much better
than SBI, with 185 FN frames. U-Net outperforms SBI by 27.66% in accuracy
and 41.23% in sensitivity, but in specificity, it underperforms SBI (without FP
frames), by 9.32%. The 15 FP that have been wrongly marked contain small
areas in intestinal folds.

Figure 4 presents an interesting view of U-Net’s performance for clinical appli-
cation. The chart shows the Set 2 sequence with the area (total of pixels) of the
segmented bleeding lesions plotted in black and in background the frames with
bleeding are represented in red - for the ground truth - and in blue for the
SBI tool.
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Table 3. Comparison between U-Net (trained on Set 1) and SBI, when applied to
Set 2.

ACC (%) TPR (%) TNR (%)

SBI 69.17 57.86 100.00

U-Net 96.83 99.09 90.68

Fig. 4. Set 2: chart of U-Net segmented area versus blood detection in ground truth
and SBI. (Color figure online)

In the first 150 sequence frames there are no red lesions. It can be seen that
there are some frames with very small areas (black dots) that are detected by
the U-Net but unrecognized as blood by the human. The SBI does not detect
any red lesion until approximately frame 160, were U-Net are about 1E4 pixels.

After frame 150, the human marked almost all the frames with red lesion,
as it can be seen by the continuous red color. The U-Net area has a very good
match with GT, as expected (ACC = 96.83%) and also translates the amount of
blood in each frame. It can be seen a coherent continuity of blood amount along
the sequence and that in the few frames without blood in the interval, around
frames 340 and frames 390. The SBI show lots of false negative red lesions,
noticed in the frequent discontinuation of blue color, in accordance with SBI
ACC = 69.17%. From the chart it seems like the SBI is tuned to identify red
lesions without false positives, as the TNR = 100% indicates.

Thus, it can be stated that the U-Net model did very well in the detection
and segmentation of bleeding in videos of endoscopy and presents high potential
to be useful in clinical environment.

5 Conclusion

In this paper, the U-Net model was evaluated in detecting and segmenting red
lesions in endoscopy videos. The U-Net model learned very well to detect red
lesions, outperforming the works that showed the best results in the state of
the art by 1.78% in accuracy and in 7.87% in sensitivity and having a speci-
ficity lower by 0.66%. It was evaluated in a sequence of images and compared
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with SBI achieving much better accuracy and excellent sensibility, much better
than SBI (more 27.66% and 41.23%, respectively). The SBI got a specificity of
100%, 9.32% better than the U-Net model. Thus, the U-Net model had an excel-
lent performance in the detection and segmentation of red lesions in endoscopy
videos, presenting an high potential to be useful in clinical environments.
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