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Abstract. Breast cancer is a major cause of death among women world-
wide. Hematoxylin and eosin (H&E) stained breast tissue samples from
biopsies are observed under microscopes for primary diagnosis of breast
cancer. In this paper, we propose a deep learning-based method for
classification of H&E stained breast tissue images released for BACH
challenge [I] by fine-tuning Inception-v3 convolutional neural network
(CNN) [2]. These images are to be classified into four classes — (i) nor-
mal tissue, (ii) benign lesion, (iii) #n situ carcinoma and (iv) invasive
carcinoma. Our strategy is to extract patches based on nuclear density
and rejecting patches that are not rich in nuclei, e.g. from non-epithelial
regions. This allowed us to discard uninformative regions of the images as
compared to random or grid sampling, because visual signs of tumors are
most evident in the epithelium. Every patch with high nuclear density in
an image is classified in one of the four above mentioned categories. The
class of the entire image is determined using majority voting over the
nuclear classes. We obtained an average accuracy of 85% over the four
classes and 93% for non-cancer (i.e. normal or benign) vs. malignant (in
situ or invasive carcinoma), which significantly improves upon a previous
benchmark [3].

Keywords: Deep learning - Histopathology - Breast Cancer - CNN -
Transfer Learning

1 Introduction

In 2012, breast cancer caused 522,000 deaths worldwide along with 1.68 million
new cases [4]. Early diagnosis of the disease and proper treatment is essential
to improve the survival rates. Examination of breast tissue biopsy using hema-
toxylin and eosin (H&E) stain plays a crucial role in determining the type of
lesion for primary diagnosis. Hematoxylin stains the nuclei purple and eosin
stains the cytoplasm pinkish. This staining helps the pathologist identify the
grade of carcinoma, which in turn determines the type of treatment to be pro-
vided to the patient. In this work we designed a deep learning based method to
classify breast cancer slides. This work is part of our entry in the BACH chal-
lenge [I]. Solutions to this problem can potentially be used to reduce diagnoses
errors, increase the throughput of pathologists, or be used in second opinion or
teaching tools.
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Tumors are believed to progress in phases. Normal breast tissues have large
regions of cytoplasm (pinkish regions) with a dense cluster of nuclei forming
glands in H&E stained slides (Fig. 1-A). Benign lesion consists of multiple ad-
jacent clusters of small-sized nuclei (Fig. 1-B). Unchecked benign lesions can
progress to in situ carcinoma in which the size of nuclei in the clusters increases
and nucleoli within the nucleus become prominent, but the tumor seems to be
circumscribed in round clusters while losing some of their glandular appear-
ance (Fig. 1-C). In invasive carcinoma the enlarged nuclei break their clustered
structure and spread to the nearby regions in fragments (Fig. 1-D). Carcinoma
images have a high nuclear density with an absence of structure in inter-nuclear
arrangement as compared to in situ carcinoma images, which still have a pre-
served inter-nuclear structure.

The recent success of CNNs for natural image classification has inspired oth-
ers and us to use them on medical images, e.g. for histopathology image clas-
sification. Spanhol et al. [5] used an ImageNet [6] based CNN architecture for
classifying benign and malignant tumors. They extracted patches of sizes 32x32
and 64x64 from the images to train their CNN. In their results they showed that
the accuracy of their CNN decreases with increase in magnification. Ciresan et
al. [7], who won the ICPR 2012 mitosis detection contest, trained a CNN on
101x101 size patches extracted from images. This enabled them to analyze nu-
clei of different sizes. Cruz-Roa et al. [§] trained a CNN on 100x 100 size patches
extracted out of whole slide images. They addressed the problem of detecting
invasive carcinoma regions in whole slide images. Their CNN was able to ex-
tract structural as well as nucleus-based features. Their method established the-
state-of-the-art by achieving an F1l-score of 0.78. A recently proposed method
by Aratdjo et al [3] addressed the problem of classifying H&E stained images
as normal, benign, in situ, or invasive carcinoma. In their approach they nor-
malized the images using the method proposed in [9]. They extracted 512x512
patches from the normalized images to train their proposed CNN architecture.
They also trained a CNN+SVM classifier for patch classification. Dataset aug-
mentation was also performed by mirroring and rotating the patches. Images
were classified by combining the patch probabilities using i) majority voting, ii)
maximum probability and iii) sum of probabilities.

Challenges in the BACH dataset include vast areas in images without any
epithelium (where the cancer starts) and areas of seemingly intermediate visual
patterns between two neighboring classes.

2 Dataset

The Breast Cancer Histology Challenge (BACH) 2018 dataset consists of high
resolution H&E stained breast histology microscopy images from [I]. These
images are RGB color images of size 2048 x 1536 pixels. Each pixel covers
0.42pum x 0.42pm of tissue area. The images in this dataset are annotated by two
medical experts and cases of disagreement among the experts were discarded.
The images are to be classified into four categories : i) normal tissue, ii) benign
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Fig. 1. Examples of H&E stained images from the BACH challenge: A) normal tissue,
B) benign lesion, C) in situ carcinoma and D) invasive carcinoma. Hematoxylin stains
the nuclei purple while eosin stains the stroma pink.

lesion, iii) in situ carcinoma, and iv) invasive carcinoma as per the agreed upon
diagnosis of the two experts. The dataset contains 100 images in each category
amounting to a total of 400 images. For our experiments we have used 75 ran-
dom images from each category for training and the remaining 25 images for
validation. Thus in total, we used 300 images for training and 100 images for
validating our method.

3 Methods

In this section we describe the details of our methods. First we will discuss
about the novelty of our pre-processing method. Then we will discuss the details
of patch-level classifier using transfer learning [I1]. Finally we will explain the
aggregation policy for generating the image-level classification, from patch-level
classifier.

3.1 Nuclei-based patch extraction

CNNs trained on only a few hundred whole H&E stained images of size 2048 x 1536
pixels are prone to poor generalization due to overfitting. So, it is clear that
CNNs have to be trained and applied on patches rather than whole images. This
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opens up the question of how the patches should be sampled from the whole
slide images. The shape and size of a nucleus along with its surrounding struc-
ture is essential for accurate tissue classification. With this line of thinking in
mind, it has previously been proposed to extracted patches centered at nuclei
from the given H&E stained images [10]. These extracted patches are also flipped
horizontally and vertically, shifted horizontally and vertically and also rotated
randomly within 180 degree for data augmentation. These methods not only
help in increasing the dataset size by at least 8 folds but also makes our model
more robust.

For patch extraction we divided the image into 299 x 299 pixels patches with
a 50% overlap. We chose this patch size for two reasons. First, because fine-
tuning Inception-v3 — our base architecture — requires images of that size, and
we wanted to avoid inaccuracies that can come due to rescaling of images due
to bilinear or cubic interpolations used in image resizing. Secondly, this patch
size ensures that the CNN extracts nuclei based features along with features of
inter-nuclear arrangements.

However, we do not use all the patches which are extracted from the image.
Instead we only choose to keep those patches which have high nuclear density
and discard patches that mostly cover stroma (with sparsely located nuclei)
in majority of their area. To extract epithelial patches dense in nuclei we first
compute a mask that identifies bluish pixels for each H&E stained image by
comparing the ratio of blue and red channel intensities with to an appropriate
threshold. By trial and error on the training images, we arrived at a threshold of
1.587. For each patch we define a blue density metric as the proportion of bluish
pixels in the patch. All patches with more than 2% bluish pixels were kept,
and the rest were discarded. One challenge that we faced was that a few H&E
stained images in the given dataset have a large part of their area filled with
stroma. In such cases very few pixels will be bluish and the image may not yield
any patches for analysis. To overcome this problem, we first sort the extracted
patches (> 2% bluish pixels) in decreasing order of the proportion of bluish
pixels.Then we define a blue density metric as the proportion of bluish pixels in
the whole image. For images with metric more than 1% we keep all the patches
for scoring with CNN. For images with metric in range 0.5% — 1%, 0.1% — 0.5%
and < 0.1% we extract 10, 5 and 1 patch respectively for scoring with CNN.
The reason for choosing less patches from such images is that stroma does not
provide the model with any significant information regarding the type of tumor
present in the image. Images with large regions of stroma are inconclusive and
can even cause medical experts to have divided opinions. Fig 2 shows a benign
image taken from the dataset along with its mask image. It can be seen that our
model only extracts patches from regions dense with nuclei. Each of the patch
has the same class label as the original image.

3.2 Transfer learning for patch-wise classification

As mentioned earlier, the paucity of training images prevents us from training
Inception-v3 from scratch with random initialization [2]. Therefore, we employed
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Fig. 2. A sample image with H&E stained benign lesion (left), and its map of bluish
pixels (right), with bounding boxes of accepted (green) and rejected patches (red).

transfer learning [I1] and only fine-tuned Inception-v3 pre-trained on the Ima-
geNet dataset [0]. However, we have made some modifications to the Inception-v3
architecture. We removed the fully connected layer at the top of the network and
added a global average pooling layer, followed by a fully connected layer with
1,024 neurons, and finally a softmax classifier with 4 neurons. Our training pro-
cess had two stages. In the first stage we froze the convolutional layers and only
trained the top (newly added) layers. In the second stage we fine-tuned the last
two inception blocks along with the top layers. We used a Keras-based imple-
mentation of Inception-v3 [2]. We used RMSProp optimizer for 25 epochs for the
first stage and SGD optimizer for the second stage with a learning rate of 0.0001
and momentum of 0.9 for 50 epochs. Disease label of an image was given to all its
patches. And, although this can lead to erroneous labels, because of the strategy
to sample only nucleus-rich patches and the curation of the BACH dataset by
its organizers, we expect that the patch-level labels are largely correct.

3.3 Decision aggregation from patches to patients

We combined the patch-based predictions using majority voting to determine the
class of the entire image. In majority voting, the class of the entire image is the
class to which maximum number of patches extracted from that image belong.
In case of a tie we use the following precedence order to classify the image: i)
invasive, ii) in situ, iii) benign and iv) normal. The reason behind using this
order was to avoid false negatives for a more dangerous disease class.

4 Results

We employed two fold validation to evaluate our method by using patient-level
accuracy on a held-out set of patients, with 25 such patients in each of the
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four classes. Accuracy for each class is defined as the ratio of correctly classified
images to the total number images for that class in the validation set. Along with
the four class classification we have also evaluated the accuracy of our method for
identifying carcinoma images against non-carcinoma images. The non-carcinoma
class consists of benign and normal images while the carcinoma class consists of
in situ and invasive carcinoma images. Along with the image-wise classification
we have also computed the patch-wise accuracy for the bluish patches.

4.1 Patch-level accuracy

After performing the above-mentioned experiment we got an average patch-wise
accuracy of 79% across all the four classes. This metric compares favorably to a
previous benchmark of 66.7% [3]. We attribute our success to nuclei-based patch
extraction, which takes away lots of variability in patch appearance on which
the CNN has to learn to be invariant.

4.2 Image-level accuracy

We used majority voting to fuse the results obtained from the patch classification
to predict the class of the entire image. The confusion matrices are shown in
Tables 1 and 2.

Table 1. Four class confusion matrix

Actual
Normal Benign In situ Invasive
g Normal 1 3 0
£ Benign 4 1 1
_ﬂg In situ 1 1 2
A~ Invasive 0 0 1

Table 2. Two class confusion matrix

Actual
Non-Carcinoma Carcinoma

. Non-Carcinoma, 5
P
redieted” Carcinoma 2

We can see in Table 1 that the our model confuses the normal class with
benign. This can be attributed partly to the high similarity between benign and
normal images in the dataset. Similarly, images of in situ images carcinoma are
confused with normal images due to a similar reason. The overall image-level
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accuracy was 85%, which was higher than the patch-level accuracy due to the
voting strategy.

Table 2 shows the image-level accuracy for non-carcinoma vs. carcinoma.
The non-carcinoma super-class consisted of normal tissue as well as benign le-
sions. The carcinoma super-class was based on in situ and invasive carcinomas.
Accuracy on this task was 93%.

A comparison of our proposed method with a previous benchmark is shown
in in Table 3.

Table 3. Comparison of our results with a previous benchmark [3] using same dataset.

Method Proposed method Aratjo et al. [3]
Pre-processing Nuclei based patch extraction| Grid Sampling
Patch Classifier Modified Inception-v3 Custom CNN
Patch-wise accuracy (4 class) 79% 67%
Image-wise accuracy (4 class) 85% 78%
Image-wise accuracy (2 class) 93% 83%

5 Conclusion and Discussion

We developed a two-stage approach for classification of the H&E tissue images
in four classes normal, benign, in situ, and invasive. One of our key contri-
butions was a pre-processing technique to consider only relevant regions from
tissue images for training and testing. We also used transfer learning for training
the patch-level classifier with a large neural network architecture (Inception-v3)
by using weights pre-trained on ImageNet dataset. We have achieved a classi-
fication accuracy of 79% at patch-level. The image-level classification was done
by majority-voting over patch-level classification results, resulting in an aver-
age accuracy of 85% over the four classes and carcinoma versus non-carcinoma
classification accuracy of 93%. These figures were significantly higher than those
achieved by a previous state-of-the-art [3]

As far medical imaging is concerned, the application of deep learning has
two major challenges namely the size of the image and lack of region-of-interest
annotations for a large number of images. Several approaches can be used to fur-
ther tackle these challenges apart from our static algorithm for patch selection.
Multi-column CNNs that examine the tissue at multiple resolutions can be tried.
Additionally, graph-based approaches to explicitly model inter-nuclear arrange-
ments can also be tried. To account for staining variation in H&E stained images
following approach can be used. First color-normalize the images using [10], ex-
tract nuclei based patches, estimate the patient class of each patch, and then
aggregate the estimated class decision for each tissue-image. The idea behind us-
ing nuclear-based patches as opposed to randomly or densely located patches is
to give primacy to identifying nuclear structure and inter-nuclear arrangements
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based on our preliminary understanding of pathology in [I0]. Additionally, mul-
tiple instance learning-based approaches that work with weakly supervised data
can also be tried.
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