Skip to main content

An Efficient Relaxed Projection Method for Constrained Non-negative Matrix Factorization with Application to the Phase-Mapping Problem in Materials Science

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10848))

Abstract

In recent years, a number of methods for solving the constrained non-negative matrix factorization problem have been proposed. In this paper, we propose an efficient method for tackling the ever increasing size of real-world problems. To this end, we propose a general relaxation and several algorithms for enforcing constraints in a challenging application: the phase-mapping problem in materials science. Using experimental data we show that the proposed method significantly outperforms previous methods in terms of \(\ell _2\)-norm error and speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  Google Scholar 

  2. Smaragdis, P.: Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs. In: Puntonet, C.G., Prieto, A. (eds.) ICA 2004. LNCS, vol. 3195, pp. 494–499. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30110-3_63

    Chapter  Google Scholar 

  3. Suram, S.K., Newhouse, P.F., Zhou, L., Van Campen, D.G., Mehta, A., Gregoire, J.M.: High throughput light absorber discovery, part 2: establishing structure-band gap energy relationships. ACS Comb. Sci. 18(11), 682–688 (2016)

    Article  Google Scholar 

  4. Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)

    Article  MathSciNet  Google Scholar 

  5. LeBras, R., Damoulas, T., Gregoire, J.M., Sabharwal, A., Gomes, C.P., van Dover, R.B.: Constraint reasoning and kernel clustering for pattern decomposition with scaling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 508–522. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_39

    Chapter  Google Scholar 

  6. Gregoire, J.M., Dale, D., Kazimirov, A., DiSalvo, F.J., van Dover, R.B.: High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum. 80(12), 123905 (2009)

    Article  Google Scholar 

  7. Colthup, N.: Introduction to Infrared and Raman Spectroscopy. Elsevier, Amsterdam (2012)

    Google Scholar 

  8. Mørup, M., Schmidt, M.N.: Sparse non-negative matrix factor 2-D deconvolution. Technical report (2006)

    Google Scholar 

  9. Bai, J., Bjorck, J., Xue, Y., Suram, S.K., Gregoire, J., Gomes, C.: Relaxation methods for constrained matrix factorization problems: solving the phase mapping problem in materials discovery. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 104–112. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_9

    Chapter  MATH  Google Scholar 

  10. Ermon, S., Le Bras, R., Suram, S.K., Gregoire, J.M., Gomes, C.P., Selman, B., van Dover, R.B.: Pattern decomposition with complex combinatorial constraints: application to materials discovery. In: AAAI, pp. 636–643 (2015)

    Google Scholar 

  11. Ermon, S., Le Bras, R., Gomes, C.P., Selman, B., van Dover, R.B.: SMT-aided combinatorial materials discovery. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 172–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_14

    Chapter  Google Scholar 

  12. Gregoire, J.M., Van Campen, D.G., Miller, C.E., Jones, R.J.R., Suram, S.K., Mehta, A.: High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. J. Synchrotron Radiat. 21, 1262–1268 (2014)

    Article  Google Scholar 

  13. Hattrick-Simpers, J.R., Gregoire, J.M., Kusne, A.G.: Perspective: composition-structure-property mapping in high-throughput experiments: turning data into knowledge. APL Mater. 4, 053211 (2016)

    Article  Google Scholar 

  14. Lin, C.-J.: On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Netw. 18(6), 1589–1596 (2007)

    Article  Google Scholar 

  15. Lee, D.-T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

    Article  MathSciNet  Google Scholar 

  16. Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Longpre, L., Suram, S.K., van Dover, R.B., Gregoire, J.M., et al.: Phase-Mapper: an AI platform to accelerate high throughput materials discovery. In: AAAI, pp. 4635–4643 (2017)

    Google Scholar 

  17. Le Roux, J., Weninger, F.J., Hershey, J.R.: Sparse NMF-half-baked or well done? Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA, Technical report no. TR2015-023 (2015)

    Google Scholar 

  18. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the \(\ell _1\)-ball for learning in high dimensions. In Proceedings of the 25th International Conference on Machine Learning, pp. 272–279. ACM (2008)

    Google Scholar 

  19. Condat, L.: Fast projection onto the simplex and the \(l_1\) ball. Math. Program. 158(1–2), 575–585 (2016)

    Article  MathSciNet  Google Scholar 

  20. Perez, G., Barlaud, M., Fillatre, L., Régin, J.-C.: A filtered bucket-clustering method for projection onto the simplex and the \(\ell _1\) ball. In: Colloque GRETSI, Juan-les-Pins, France (2017)

    Google Scholar 

  21. Le Bras, R., Bernstein, R., Suram, S.K., Gregoire, J.M., Selman, B., Gomes, C.P., van Dover, R.B.: A computational challenge problem in materials discovery: synthetic problem generator and real-world datasets (2014)

    Google Scholar 

Download references

Acknowledgments

Work supported by an NSF Expedition award for Computational Sustainability (CCF-1522054), NSF Computing Research Infrastructure (CNS-1059284), NSF Inspire (1344201), a MURI/AFOSR grant (FA9550), and a grant from the Toyota Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwen Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, J., Ament, S., Perez, G., Gregoire, J., Gomes, C. (2018). An Efficient Relaxed Projection Method for Constrained Non-negative Matrix Factorization with Application to the Phase-Mapping Problem in Materials Science. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics