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Abstract. The number of applications generating sequential data is ex-
ploding. This work studies the discovering of frequent patterns in a large
sequence of events, possibly time-stamped. This problem is known as
the Frequent Episode Mining (FEM). Similarly to the mining problems
recently tackled by Constraint Programming (CP), FEM would also ben-
efit from the modularity offered by CP to accommodate easily additional
constraints on the patterns. These advantages do not offer a guarantee of
efficiency. Therefore, we introduce two global constraints for solving FEM
problems with or without time consideration. The time-stamped version
can accommodate gap and span constraints on the matched sequences.
Our experiments on real data sets of different levels of complexity show
that the introduced constraints is competitive with the state-of-the-art
methods in terms of execution time and memory consumption while of-
fering the flexibility of adding constraints on the patterns.

1 Introduction

The trend in data science is to automate the data-analysis as much as possible.
Examples are the Automating machine learning project [10], or the commer-
cial products www.automaticstatistician.com and www.datarobot.com. The
Auto-Weka [18] and Auto-sklearn [9] modules can automate the selection of a
machine learning algorithm and its parameters for solving standard classification
or regression tasks. Most of these automated tools target tabular datasets, but
not yet sequences and time-series data. Data-mining problems on sequences and
time series remain challenging [32] but are nevertheless of particular interest [7,
29]. We believe that Constraint Programming (CP), because of the flexibility
it offers, may play a role in the portfolio of techniques available for automating
data-science on sequential data. As an illustration of this flexibility, Negrevergne
and Guns [23] identified some constraints that could be stated on the patterns
to discover in a database of sequences: length, exclusion/inclusion on symbols,
membership to a regular language [25], etc. The idea of using CP for data-mining
is not new. It was already used for item-set mining [11, 12, 24, 28], for Sequential
Pattern Mining (SPM) [2, 3, 16, 23] or even for mobility profile mining [17].

In this paper we address the Frequent Episode Mining (FEM), first intro-
duced with the apriori-like method WINEPI [22] and improved on MINEPI [21],
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with a CP approach. Contrarily to the traditional SPM, FEM aims at discovering
frequent patterns in a single but very long sequence of symbols possibly time-
stamped. Assume for instance a non time-stamped sequence 〈a, b, a, c, b, a, c〉 and
we are looking for patterns of length three occurring at least two times. Such
a subsequence is 〈a, b, c〉 that occurs exactly two times. A first occurrence is
〈a,b, a, c, b, a, c〉 and a second one is 〈a, b,a, c,b, a, c〉. The attentive reader may
wonder why 〈a,b, a, c, b, a, c〉 is not counted. The reason is that the head/total
frequency measure [15] avoids duplicate counting by restricting a counting posi-
tion to the first one. This measure has some interesting properties such as the
well known anti-monotonicity which states that if a sequence is frequent all its
subsequences are frequent too and reversely. This property makes it possible to
design faster data-mining algorithm. Indeed, based on these properties, Huang
and Chang [14] proposed two algorithms, MINEPI+ and EMMA. While the
first one is only a small adaptation of MINEPI [21], the second uses memory an-
chors in order to accelerate the mining task with the price of a greater memory
consumption. As variants of this problem, episodes can be closed [30, 34], and
other (interestingness) measures [4, 6, 19] can be considered. When considering
time-stamped sequences such as 〈(a, 1), (b, 3), (a, 5), (c, 6), (b, 7), (a, 8), (c, 14)〉,
one may also want to impose time constraints on the time difference between
any two matched symbols or between the first and last matched ones. Such
constraints, called gap and span were also introduced for the SPM [3] with CP.

The problem of discovering frequent pattern in a very long sequence can be
reduced do the standard SPM problem [1]. The reduction consists in creating
a database of sequences composed of all the suffixes of the long sequence. For
our example, the sequence database would be: 〈a, b, a, c, b, a, c〉, 〈b, a, c, b, a, c〉,
〈a, c, b, a, c〉, 〈c, b, a, c〉, 〈b, a, c〉, 〈a, c〉, 〈c〉. A small adaptation of existing algo-
rithms is required though to match any sequence of the database on its first
position in accordance with the head/total frequency measure. This reduction
has one main drawback. The spatial complexity is O(n2) with n the length of
the sequence. Such a complexity will quickly exceed the available memory for
sequence lengths as small as a few thousands.

The contribution of this paper is a flexible and efficient approach for solving
the frequent episode mining problem. WINEPI, MINEPI and EMMA are special-
ized algorithms not able to accommodate additional constraints. We introduce
two global constraints for FEM, which use an implicit decomposition having a
O(n) spatial complexity. Our global constraints are inspired by the state-of-the-
art approaches [2, 3, 16] but keeping the reduction into a suffix database implicit
instead of explicit. We propose two versions: with and without considering gap
and span constraints. We are also able to take some algorithmic advantages in
the filtering algorithms using the property that the (implicit) database is com-
posed of sorted suffixes from a same sequence. To the best of our knowledge, this
work is the first CP-based approach proposed for solving efficiently this family
of problems with the benefit that several other constraints can be added.

This paper is organized as follows. Section 2 introduces the technical back-
ground related to the FEM problem. It explains how the problem can be modeled



using CP and presents our first global constraint (episodeSupport). Section 3
shows how time can be integrated into the problem and describes the second
global constraint (episodeSupport with time). Finally, experiments are carried
out on synthetic and real-life datasets in Sect. 4.

2 Mining Episodes in a Non Timed Sequence

2.1 Technical Background

Let Σ = {1, . . . , L} be an alphabet representing a set of possible symbols. We
define a non timed sequence s =

〈
s1, . . . , sn

〉
over Σ as an ordered list of symbols

such that ∀i ∈ [1, n], si ∈ Σ. Let us consider the following definitions based on
the formalization of Aoga et al. [2] and Huang and Chang [14].

Definition 1 (Subsequence relation, Embedding). α = 〈α1, . . . , αm〉 is a
subsequence of s = 〈s1, . . . , sn〉, denoted by a � s, if m ≤ n and if there exists
a list of indexes (e1, . . . , em) with 1 ≤ e1 ≤ · · · ≤ em ≤ n such that sei = αi.
Such a list is referred as an embedding of s. Sequence s is also referred as a
super-sequence of α.

Example 1. 〈a, b, c〉 is a subsequence of the sequence s = 〈a, b, a, c, b, a, c〉 with
embeddings (1, 2, 4) or (1, 2, 7) or (3, 5, 7).

Definition 2 (Episode-embedding). Let us consider α = 〈α1, . . . , αm〉 �
s. Embedding (e1, . . . , em) is an episode-embedding if it is an embedding of s
and if all the other embeddings (e1, e

′
2, . . . , e

′
m) are such that (e2, . . . , em) �L

(e′2, . . . , e
′
m) where �L represents a lexicographic ordering.

Example 2. 〈a, b, c〉 is a subsequence of s with (1, 2, 4) and (3, 5, 7) as episode-
embeddings. Besides, (1, 2, 7) is not an episode-embedding because (2, 7) is lex-
icographically greater than (2, 4).

Definition 3 (Support). The support σs(α) of a subsequence α in a sequence
s is the number of episode-embeddings of α in s.

Example 3. For s of Example 1, we have σs(〈a, b, c〉) = 2.

Frequent Episode Mining (FEM) problem can then be formalised. Let us
underline that this definition is related to the total frequency measure introduced
by Iwanuma et al. [15]. The goal is to count up occurrences without duplication.
To do so, we use the concept of prefix-projection introduced in PrefixSpan [13]
and used thereafter by Kemmar et al. [16] and Aoga et al. [2] for SPM.

Definition 4 (Frequent Episode Mining (FEM)). Given a set of symbols
Σ, a sequence s over Σ and a threshold θ, the goal is to find all the subsequences
α in s such that σs(α) ≥ θ. These subsequences are called episodes.



Definition 5 (Prefix, Projection, Suffix). Let α = 〈α1, . . . , αk〉 and s =
〈s1, . . . , sn〉 be two sequences. If α � s, then the prefix of s w.r.t. α is the small-
est prefix of s that remains a super-sequence of α. Formally, it is the sequence
〈s1, . . . , sj〉 such that α � 〈s1, . . . , sj〉 and such that there exists no j′ < j where
α � 〈s1, . . . , sj′〉. The sequence 〈sj+1, . . . , sn〉 is then called the suffix of s w.r.t.
α, or the α-projection, and is denoted by s|α. If α is not a subsequence of s, the
α-projection is empty.

Example 4. Given sequence s of Example 1 and α = 〈b〉, sequence 〈a, b〉 is a
prefix of s w.r.t. α and 〈a, c, b, a, c〉 is a suffix (s|α = 〈a, c, b, a, c〉).

Definition 6 (Initial Projection). An initial projection of a sequence s =
〈s1, . . . , sn〉 w.r.t. a symbol x, denoted by s|Ix , is the list of all the suffixes s′ =
〈si, . . . , sn〉 such that si−1 = x for all i ∈ (1, n].

Example 5. For s and a symbol a, we have s|Ia =
[
〈b, a, c, b, a, c〉, 〈c, b, a, c〉, 〈c〉

]
.

Definition 7 (Internal Projection). Given a list of sequences Ω, an internal
projection of Ω w.r.t. pattern α, denoted by Ω|α, is the list of the α-projection
of all sequences in Ω. All the empty sequences are removed from Ω|α.

Example 6. For α = 〈b〉 and Ω =
[
〈b, a, c, b, a, c〉, 〈c, b, a, c〉, 〈c〉

]
, we obtain

Ω|α =
[
〈a, c, b, a, c〉, 〈a, c〉

]
.

Definition 8 (Projected Frequency). Given the list of sequences Ω, and a
projection s|α for each sequence s ∈ Ω, the projected frequency of a symbol is the
number of α-projected sequences where the symbol appears.

Example 7. Given the internal projection Ω|α of Example 6, the projected fre-
quencies are a : 2, b : 1 and c : 2.

In practice, the initial projections and internal projections can be efficiently
stored as a list of pointers in the original sequence s. In our example (s =
〈a, b, a, c, b, a, c〉), we have s|Ia = [2, 4, 7] and starting from Ω = s|Ia we can repre-
sent Ω|〈b〉 =

[
3, 6

]
. This representation introduced in PrefixSpan [13] is called the

pseudo projection representation. The algorithm works as follows. It starts from
the empty pattern and successively extends it in a depth-first search. At each
step, a symbol is added to the pattern, and all the sequences of the database
are projected accordingly. A backtrack occurs when all the projected frequen-
cies are below the support threshold. When a backtracking is performed during
the search, the last appended symbol is removed. This procedure is known as
the pattern growth method [13]. A new projection is thus built and stored at
each step. An important consideration for the efficiency of this method is that
the projected sequences do not need to be computed from scratch at each it-
eration. Instead, the pseudo-projection representation is used and maintained
incrementally at each symbol extension of the pattern. Starting from the previ-
ous pseudo-projection, when the next symbol is appended, one can start from
each position in the pseudo-projection representation and look, for each one, the



next matching positions in s equal to this symbol. The new matching positions
constitute the new pseudo-projection representation. Since the search follows a
depth-first-search strategy, the pseudo projections can be stacked on a same vec-
tor allowing to reuse allocated entries on backtrack. This memory management
is known as a trailing in CP and was introduced for SPM by Aoga et al. [2, 3].

2.2 Problem Modelling

Our first contribution is a global constraint, episodeSupport, dedicated to find
frequent patterns (or episodes [22]) in a sequence without considering time. Let
s = 〈s1, . . . , sn〉 be a sequence of n symbols over Σ, the set of distinct symbols
appearing in s, and θ, the minimum support threshold desired.

Decision Variables Let P = 〈P1, . . . , Pn〉 be a sequence of variables represent-
ing a pattern. The domain of each variable is defined as Pi = Σ ∪ {ε} for all
i ∈ [1, n]. It indicates that each variable can take any symbol appearing in s
as value in addition to ε, which is defined as the empty symbol. An assignment
of Pi to ε means that Pi has matched no symbol. It is used to model patterns
having a length lower than n. A solution is an assignation of each variable in P .

EpisodeSupport Constraint The episodeSupport(P , s, θ) constraint en-
forces the three following constraints: (1) P1 6= ε, (2) Pi = ε → Pi+1 = ε,
∀i ∈

[
2, n

)
and (3) σs(P ) ≥ θ. The first constraint states that a pattern cannot

begin with the empty symbol. It indicates that a valid pattern must contain
at least one symbol. The second constraint ensures that ε can only appear at
the end of the pattern. It is used in order to prevent same patterns with ε in
different positions to be part of the same solution (such as 〈a, b, ε〉 and 〈a, ε, b〉).
Finally, the last constraint states that a pattern must occur at least θ times in
the sequence. The goal is then to find an assignment of each Pi satisfying the
three constraints. The episodeSupport constraint filters from the domains of
variables P the infrequent symbols in s at each step in order to find an assign-
ment representing a frequent pattern according to θ. All the inconsistent values
of the next uninstantiated variables in the pattern are then removed. Assuming
the pattern variables are labeled in static order from left to right, the search
is failure free when only this constraint must hold (i.e. all the leaf nodes are
solution). Besides, episodeSupport is domain consistent: the remaining values
in the domain of each variable are part of a solution because all of them have,
at least, one support. Additional constraints can also be integrated to the model
in order to define properties that the patterns must satisfy. For instance, we can
enforce patterns to have at most k symbols or to follow a regular expression.

2.3 Filtering Algorithm

Preprocessing The index of the last position of each symbol in s is stored into a
map (lastPos). For instance, s = 〈a, b, a, c,b,a, c〉 gives

{
(c→ 7), (a→ 6), (b→

5)
}

. The map can be iterated in a decreasing order by the last positions.



〈a, b, a, c, b, a, c〉

(0)

s

3 〈b, a, c, b, a, c〉
3 〈c, b, a, c〉
3 〈c〉

(1)

Ω1 : s|Ia
P : 〈a〉

3 〈a, c, b, a, c〉
3 〈a, c〉
7

(2)

Ω2 : Ω1|〈b〉
P : 〈a, b〉

3 〈b, a, c〉
3 〈〉
7

(3)

Ω3 : Ω2|〈c〉
P : 〈a, b, c〉

3 〈〉
7
7

(4)

Ω4 : Ω3|〈c〉
P : 〈a, b, c, c〉

a b c c

posv

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 2 4 7 3 6 5 8 8 . .

φ = 1
ϕ = 7
ψ = 0

(0)

φ = 8
ϕ = 3
ψ = 1

(1)

φ = 11
ϕ = 2
ψ = 2

(2)

φ = 13
ϕ = 2
ψ = 3

(3)

φ = 15
ϕ = 1
ψ = 4

(4)

(a) Sequence projection and its reversible vector.

3 〈a, b, a, c, b, a, c〉
3 〈a, c, b, a, c〉
3 〈a, c〉

(1)

Ω1 : s|Ia

a
7

4

2

posStack(Ω1)

7

4

2

(c→ 7)

freq[c] = 3

7

4

2

(a→ 6)

pop()

4

2

(a→ 6)

freq[a] = 2

4

2

(b→ 5)

freq[b] = 2

(b) Efficient frequency computation.

Fig. 1: Sequence projection (3 indicates a match, 7 otherwise), its reversible
vector and frequency computation mechanism.

Sequence Projection and Pseudo Projection The key idea is to succes-
sively compute a projection from the previous one each time a variable has been
assigned. The assignment of the first variable of the pattern (P1) involves an
initial projection. It splits s into a list of subsequences such that each one be-
gins with the projected symbol. The assignment of the other variables (P2 to
Pn) implies an internal projection. This behavior is illustrated in the upper part
of Fig. 1a for an arbitrary example. The steps leading to pattern 〈a, b, c, c〉 are
detailed. Three subsequences are obtained after an initial projection of symbol
a
(
(0) → (1)

)
. While there are non empty sequences, internal projections are

successively performed
(
(1)→ (4)

)
and the pattern (P ) is incrementally built.

In practice, only pointers to the position in each sequence where the prefix
has matched are stored. It is the mechanism of pseudo projection. As Aoga et al.
[2], we implement it with a reversible vector (posv) and a trail-based structure
(lower part of Fig. 1a). The idea is to use the same vector during all the search
inside the propagator, and to only maintain relevant start and stop positions. At
each propagator call, three steps are performed. First, the last recorded start and
stop positions are taken. Secondly, the propagator records the new information
in the vector after the previous stop position. Finally, the new positions are
updated in order to retrieve the information added. The reversible vector is then
built incrementally. For each projection, the corresponding start index (φ) in the
vector as well as the number of sequences inside the projection (ϕ) are stored.
In other words, information related to a projection are located between indexes
i ∈ [φ, φ+ϕ). Besides, the index of the variable Pi that has been assigned (ψ) is
also recorded after each projection step. Before the first assignation ψ is equal
to zero. The three variables are implemented as reversible integers. Initially, all
the indexes are present in the vector, but all along the pseudo-projections, only
the non empty sequences are considered.

Propagation The goal is to compute a projection each time a variable has been
assigned to a symbol a. Assignments of variables are done successively from the
first variable to the last one. The propagator is then called after each assignment.
It is shown in Alg. 1. Initialization of reversible structures is done when ψ = 0



(lines 8-9). If the last assigned variable (Pψ) has been bound to ε, the algorithm
enforces all the next variables to be also bound to ε (lines 10-12). The pattern is
then completed and the propagation is finished. Otherwise, after each variable
binding, the projected sequence and the projected frequencies are computed (line
14). Finally, all the infrequent symbols are removed from the domain of Pψ+1

(lines 15-17). Projected frequency of each symbol in the domain of Pψ+1 (except
ε) is compared to the threshold and removed if it is infrequent.

Sequence Projection Let us now present how sequences are projected (Alg. 2).
First, the projected frequency of each symbol for the current pseudo projection
is set to 0 (freq on line 8). The main loop (lines 10-23) iterates over the previous
projection thanks to the reversible integers φ and ϕ. At each iteration a value in
posv is considered. The next condition (line 12) is used to distinguish the initial
from an internal projection. If a is the first projected symbol and if it does not
match with the first symbol of the sequence, then the sequence is not included
in the projection. Otherwise, an internal projection is applied.

The next expression (lines 13-14) is an optimization we introduced, called
early projection stopping. This optimization is based on one invariant of our
structure: it stores suffixes of s with a decreasing order by their size. Each suffix
in a projection is then strictly included in all the previous ones. When a no-match
has been detected in a sequence, all the next ones can be directly discarded
without being checked. It stops the internal projection as soon as possible. The
early projection stopping gains importance when the number of sequences is
large. Then, if a is not present in the current considered sequence, the loop can
be stopped and unnecessary computation is avoided.

At this step, we are sure that a appears at least once in the current sequence
in the projection. Lines 16 to 21 make the search for the match, either by position
caching, or by iteration on the positions. Position caching is a second optimiza-
tion we introduced. Once a match has been detected in a sequence, the position
of the match is recorded. Thanks to the aforementioned invariant, we are sure
that the match in the next sequence cannot occur before this position. If this
position is greater than the start position of the sequence (in posv), a match
is directly detected. The reversible vectors are then updated (line 23). Variable
sup is used to store the size of the new projection.

The last loop (lines 24-28) updates the projected frequency of each symbol.
The projected frequency of a symbol in a projection corresponds to the number of
sequences of the projection beginning at an index lower than the index of the last
position of the symbol. This idea was introduced in LAPIN [33] and exploited
by Aoga et al. [2]. It can be implemented efficiently thanks to the invariant and
lastPos map. It is illustrated in Fig. 1b (upper part) with lastPos = {(c →
7), (a → 6), (b → 5)}. The position just after each match is pushed in a LIFO
structure, posStack. The last matched position is located on the top of the stack.

Once the stack is obtained, the idea is to successively compare in a decreasing
order the last position of each symbol with the top of the stack. Illustration of
this behavior is presented in Fig. 1b (lower part). If the last position of a symbol
is greater than the top of the stack, it indicates that the symbol occurs at least



Algorithm 1: propagate(s,Σ, a, P )

1 . Internal State: posv, φ, ϕ and ψ.
2 . Pre: s is the initial long sequence of size n.
3 . Σ is the set of symbols and a is a symbol.
4 . If ψ > 0 then 〈P1, . . . , Pψ〉 ∈ P are bound and Pψ is assigned to a.
5 . θ is the support threshold.
6 . posv, φ, ϕ and ψ are the reversible structures as defined before.
7

8 if ψ = 0 then
9 φ := 1 ϕ := n ψ := 1 posv[i] := i i ∈

[
1, n
]

10 if Pψ = ε then
11 for j ∈ [ψ + 1, n] do
12 Pj .assign(ε)

13 else
14 freq := sequenceProjection(s,Σ, a) . Detailed in Alg. 2.
15 foreach b ∈ Domain(Pψ+1) do
16 if b 6= ε ∧ freq[b] < θ then
17 Pψ+1.removeV alue(b)

Algorithm 2: sequenceProjection(s,Σ, a)

1 . Internal State: posv, φ, ϕ and ψ.
2 . Pre: s is the initial long sequence.
3 . Σ is the set of symbols.
4 . a is the current projected symbol (a = Pψ).
5 . posv, φ, ϕ and ψ are reversible structures as defined before.
6 . posv[i] with i ∈ [φ, φ+ ϕ) is initialized.
7

8 j := ϕ sup := 0 prevPos := −1 freq[b] := 0 ∀b ∈ Σ
9 posStack := Stack()

10 for i ∈ [φ, φ+ ϕ− 1] do
11 pos := posv[i]
12 if ψ > 1 ∨ a = s[pos] then
13 if pos > lastPos[a] then
14 break . Early projection stopping

15 else
16 if prevPos < pos then
17 while a 6= s[pos] do
18 pos := pos+ 1

19 prevPos := pos . Position caching

20 else
21 pos := prevPos

22 posStack.push(pos+ 1)
23 posv[j] := pos+ 1 j := j + 1 sup := sup+ 1

24 foreach (x, posx) in lastPos do
25 while posStack.notEmpty ∧ posStack.top > posx do
26 posStack.pop

27 freq[x] := posStack.size . Projected frequency
28 if posStack.isEmpty then break

29 φ := φ+ ϕ ϕ := sup ψ := ψ + 1
30 return freq



once in the current sequence and consequently in all the previous ones in the
stack. The projected frequency of this symbol corresponds then to the remaining
size of the stack and the next symbol in lastPos can be processed. Otherwise, we
are sure that the symbol has no occurrence in the current sequence. Its position
is popped and the comparison is done with the new top. The resulting projected
frequencies are c = 3, a = 2 and b = 2. This mechanism has a time complexity
of O(n+ |Σ|). For comparison, projected frequencies are computed in O(n×|Σ|)
by Aoga et al. [2] (each subsequence is scanned at each projection). Finally, the
reversible integers are updated and the projected frequency map is returned.

Time and Spatial Complexity Main loop of Alg. 2 (lines 10-23) is computed
in O(n2) and the projected frequencies (lines 24-28) in O(n + |Σ|) = O(n) (be-
cause the number of different symbols is bounded by the sequence size). In Alg.
1, lines 8-9 cost O(n) and the domain pruning (lines 15-17) is performed in
O(|Σ|). It gives O(n+ (n2 + n) + |Σ|) = O(n2). For the spatial complexity, we
have O(n + n × d) = O(n × d) with d the maximum depth of the search tree,
which is the maximum size of the reversible vector. For comparison, an explicit
decomposition of the problem gives O(n2 + n× d) = O(n2).

3 Mining Episodes in a Timed Sequence

3.1 Technical Background

So far, episodeSupport can only deal with sequences of symbols where time is
not considered. In practice, sequences can also be time-stamped. Such sequences
are most often referred as sequences of events instead of sequences of symbols
and new constraints can then be expressed. For instance, we can be interested in
finding episodes such that the elapsed time between two events does not exceed
one hour. We define a sequence of events s =

〈
(s1, t1), . . . , (sn, tn)

〉
over Σ as

an ordered list of events (si) occurred at time ti such that for all i ∈ [1, n] we
have si ∈ Σ and t1 ≤ t2 ≤ . . . ≤ tn. The list containing only the events is
denoted by ss and the list of timestamps by st. All the principles defined in the
previous sections are reused. Besides, we are now able to enforce time restrictions.
Two of them are used in practice: gap and span. The former (gap) restricts the
time between two consecutive events while the latter (span) restricts the time
between the first and the last event. Considering such restrictions cannot be
done only by imposing additional constraints in the model [3]. It requires to
adapt the subsequence relations (Def. 9) and to design a dedicated propagator.
The concept of extension window is also defined. The extension window of an
embedding contains only events whose timing satisfies gap constraint.

Definition 9 (Subsequence under gap/span). α = 〈α1, . . . , αm〉 is a subse-
quence of s =

〈
(s1, t1), . . . , (sn, tn)

〉
under gap[M,N ], denoted by α �gap[M,N ] s,

if and only if ss is a subsequence of embedding (e1, . . . , ek) according to Def. 1,
and if ∀i ∈ [2, k] we have M ≤ tei − tei−1 ≤ N . The embedding (e1, . . . , ek)

under �gap[M,N ] relation is called a gap[M,N ]-embedding. (e1, . . . , ek) is an



episode-embedding of α according to Def. 2 where �gap[M,N ] is considered for

the subsequence relation. The support of α, denoted by σ
gap[M,N ]
s (e), is the num-

ber of gap[M,N ]-embeddings of α in s. Similarly, α is a subsequence of s under
span[W,Y ], denoted by α �span[W,Y ] s, if and only if ss is a subsequence of
embedding (e1, . . . , ek) according to Def. 1, and if W ≤ tek − te1 ≤ Y . Relation

�span[W,Y ] and σ
span[M,N ]
s (e) are also defined similarly.

Example 8. Let us consider s =
〈
(a, 2), (b, 4), (a, 5), (c, 7), (b, 8), (a, 9), (c, 12)

〉
.

〈a, b, c〉 is a subsequence of s under gap[1, 3] with embedding (1, 2, 4). (3, 5, 7) is
not a gap[1, 3]-embedding because te3 − te2 = 12 − 8 > 3. Besides, 〈a, b, c〉 is a
subsequence of s under span[6, 10] with embedding (3, 5, 7). (1, 2, 4) is not valid
because te3 − te1 = 7− 2 < 6.

Definition 10 (Extension window). Let e = (e1, e2, . . . , ek) be any gap[M,N ]-
embedding of a subsequence α in a sequence s. The extension window of this em-

bedding, denoted ew
gap[M,N ]
e (s), is the subsequence

〈
(su, tu), . . . , (sv, tv)

〉
such

that (tek + M ≤ tu) ∧ (tv ≤ tek + N) ∧ (tu−1 < tek + M) ∧ (tv+1 > tek + N).
Each embedding has a unique extension window, which can be empty.

Example 9. Let (3, 4) be a gap[2, 6]-embedding of 〈a, c〉 in sequence s (Example

8). We have ew
gap[2,6]
e (s) =

〈
(a, 9), (c, 12)

〉
.

The goal is to find the all patterns having a support, possibly under gap and
span, greater than the threshold. Let P = 〈P1, . . . , Pn〉 be a sequence of variables
representing a pattern. the timed version of episodeSupport(P ,s,θ,M ,N ,W ,Y )
enforces the four following constraints: (1) P1 6= ε, (2) Pi = ε → Pi+1 = ε,

∀i ∈
[
1, n

)
, (3) σ

gap[M,N ]
s (P ) ≥ θ and (4) σ

span[M,N ]
s (P ) ≥ θ.

3.2 Filtering Algorithm

Precomputed Structures The three structures are shown in Fig. 2a. First,
the lastPos map is adapted from the previous section in order to store the last
position of each event that can be matched while satisfying the maximum span
(Y ). The last position of each event inside each range [t, t+Y ] is recorded, where
t is the timestamp of the event. Maximum span is then implicitly handled by this
structure, which is not done by Aoga et al. [3]. Besides, for each position i in s,
the index of the first (u) and the last (v) positions after i such that tu ≥ ti +M
and tv ≥ ti + N are stored into a map (nextPosGap), where M and N are the
minimum and maximum gap. The nextPosGap is used after each projection in
order to directly access the next extension window. Finally, for each position i
in s, the number of times that each event has occurred inside the range [1, i]
in s is stored (freqMap). It is used in order to efficiently compute the projected
frequency of each symbol during a projection. We can be sure that an event a
appears at least once in a window of range [u, v] if the occurrence of a at the end
of the window is strictly greater than the occurence of a just before the window
(freqMap[v][a] > freqMap[u− 1][a]). It has not been used by Aoga et al. [3].



1 2 3 4 5 6 7

a 6 6 6 6 6 6 .

b 5 5 7 7 7 7 7

c 4 4 4 4 . . .

lastPosMap for span[Y = 10]

1 2 3 4 5 6 7

1 2 3 5 6 7 7 .

2 6 6 6 6 7 . .

nextPosGap for gap[2, 7]

1 2 3 4 5 6 7

a 1 1 2 2 2 3 3

b 0 1 1 1 2 2 3

c 0 0 0 1 1 1 1

freqMap

(a) Precomputed structures.

〈
(a, 1), (b, 3), (a, 5), (c, 6), (b, 7), (a, 8), (b, 14)

〉
(0) s

3
〈
(b, 3), (a, 5), (c, 6), (b, 7), (a, 8)

〉
3
〈
(b, 7), (a, 8)

〉
3
〈
(b, 14)

〉(1) Ω1 : s|Ia

3

{〈
(a, 5), (c, 6), (b, 7), (a, 8)

〉〈
(b, 14)

〉
3
〈
(b, 14)

〉
3
〈〉(2) Ω2 : Ω1|〈b〉

{
3
〈
(a, 8)

〉
7

7

7

(3) Ω3 : Ω2|〈c〉

a

b

c

(b) Sequence projection.

startv

esize

embs

1 2 3 4 5 6 7 8

1 3 6 1 3 6 1 .

1 1 1 2 1 1 1 .

1 3 6 2 5 7 4 .

. . . 5 . . . .

. . . . . . . .

φ = 1
ϕ = 3
ψ = 1

(1)

φ = 4
ϕ = 2
ψ = 2

(2)

φ = 7
ϕ = 1
ψ = 3

(3)

(c) Reversible vectors.

Fig. 2: Data structures used for timed sequences with gap[2, 7] and span[1, 10].

Storing Several Embeddings When a gap constraint is considered, the anti-
monotonicity property does not hold anymore [3]. The main consequence is that
all the possible embeddings must be considered, and not only the first one.
The projection mechanism (described in Fig. 1a) has then to be adapted. It
is illustrated in Fig. 2b. For instance, two embeddings are considered for the
projection from (1) to (2) of the first sequence. It is required to record all of
the corresponding extension windows in order to miss none supporting event.
To do so, a reversible vector (startv) recording the start index in s for each
sequence is used (Fig. 2c). Besides, other reversible vectors are added: esize,
which represents the number of embeddings related at each projected sequence
and embs, which records the start index of the different embeddings. It is a
simplified adaptation of the structure proposed by Aoga et al. [3].

Minimum Span The minimum span is not anti-monotonic. Therefore, we do
not consider it during the projection but a posteriori : it is only checked when
a complete pattern is obtained and not before. It requires slight modifications
in the propagate method (Alg. 1). A variable γs(P ) representing the number of
supports satisfying the minimum span constraint for P is recorded and com-
puted during the projection. Once the projections are completely done for this
episode (after the line 12), γs(P ) is compared with the support threshold and
an inconsistency is raised if it is below the threshold.

Sequence Projection Projection mechanism is presented in Alg. 3. Initially,
the projected frequencies of each event is set to 0 (line 9). When ψ = 1, an
initial projection is performed (lines 10-20) and we are looking for events that
match with a (line 13). Once a match is detected, reversible vectors are updated
(line 14). Projected frequencies are computed using nextPosGap and freqMap
structures (lines 15-20). First, the window where the events must be considered
is computed. Secondly, the projected frequency of each event appearing in the
window is incremented. When ψ > 1, we have an internal projection (lines
21-43). Each embedding is successively considered (line 26). For each one, the
sequence is iterated from the first next position satisfying the minimum gap to



the last one satisfying the maximum gap, or to the last symbol of the sequence
(line 28). Once a match has been detected, the number of possible embeddings
is incremented and its position is recorded (line 30). If the embedding of the
current pattern satisfies the minimum span constraint, γs is incremented (lines
31-32). It is used in the propagate method as explained before. Then, projected
frequencies are computed as in the initial projection (lines 33-39).

Time and Spatial Complexity Let us assume k is the maximum length of
time window (often k � n) and d the maximum depth of the tree search (d ≤ k).
Initial projection (lines 11-21) in Alg. 3 is computed in O(n×|Σ|): the sequence
is completely processed and frequencies are computed at each match. Internal
projection (lines 22-44) is computed in O(n×|Σ|×k2). It gives O(n×|Σ|+n×
|Σ|×k2) = O(n×|Σ|×k2). For the spatial complexity, vectors have a maximum
length of k × d and there are at most k embeddings, which gives O(d× k2).

4 Experimental Results

This section evaluates the performance of episodeSupport on different datasets
with and without time consideration. Experiments have been realised on a com-
puter with a 2.7 GHz Intel Core i5 64 bits processor and with a RAM of 8 Go
using a 64-Bit HotSpot(TM) JVM 1.8 running on Linux Mint 17.3. Execution
time is limited to 1800 seconds unless otherwise stated. The algorithms have
been implemented in Scala with OscaR solver [31] and memory assessment has
been performed with java Runtime classes. For the reproducibility of results,
the implementation of both constraints is open source and available online.1

One synthetic and three real-data sets are considered: proteins from Uniprot
database [5], UCI Unix dataset [20] and UbiqLog [26, 27].

Our approach is compared with the existing methods. We identified two ways
to mine frequent patterns in a sequence. On the one hand, we can resort to a
specialized algorithm. To the best of our knowledge, MINEPI+ and EMMA [14]
are the state-of-the-art methods for that. On the other hand, we can explicitly
split the sequence into a database and then reduce the problem into an SPM
problem. Once done, CP-based methods can be used [2, 3, 16, 23]. Our compar-
isons are based on the approach of Aoga et al. [2, 3] that turns out to be the most
efficient. We refer to it as the Decomposed Frequent Episode Mining (DFEM)
approach, or DFEMt when time is considered.

Memory Bound Analysis We applied DFEM and episodeSupport on syn-
thetic sequences of different sizes with 100 distinct symbols uniformly distributed
in order to define what are the largest sequences that can be processed. We ob-
served that with decomposed approaches, sequences greater than 30000 symbols
cannot be processed when memory is limited to 8GB. With episodeSupport

memory is not a bottleneck.

Comparison with Decomposed Approaches Experiments and results with
Uniprot and UbiqLog datasets are shown in Fig. 3 and Table 1. The latter

1 https://bitbucket.org/projetsJOHN/episodesupport (also available in [31])



Algorithm 3: sequenceProjectionT imed(ss, st, Σ, a,N,W )

1 . Internal State: startv, esize, embs, φ, ϕ, ψ, γs(P:ψ).
2 . Pre: ss and st are the event/timestamp list of the initial long sequence.
3 . Σ is the set of symbols.
4 . a is the current projected symbol (a = Pψ).
5 . startv[i], esize[i] and embs[i] with i ∈ [φ, φ+ ϕ) are initialized.
6 . γs(P:ψ) = 0 with P:ψ the episode represented by 〈P1, . . . , Pψ〉.
7 . N and W are the gap max bound and of the span min bound.
8

9 freq[b] := 0 ∀b ∈ Σ
10 if ψ = 1 then
11 j := 1
12 for pos ∈

[
1, |ss|

]
do

13 if ss[pos] = a then
14 startv[j] := pos esize[j] := 1 embs[j][1] := pos j := j + 1
15 (u, v) := nextPosGap[pos] . Precomputed structure
16 if u ≤ |ss| then
17 for b ∈ Domain(Pψ+1) do
18 l := min

(
v, |ss|

)
19 if freqMap[l][b] > freqMap[u− 1][b] then
20 freq[b] := freq[b] + 1 . Projected frequency

21 else
22 j := φ+ ϕ
23 for i ∈ [φ, φ+ ϕ− 1] do
24 id := startv[i] nEmb := 0 k := 1 v := −1 isIncremented := false
25 isV isited[b] := false ∀b ∈ Σ
26 while v < |ss| ∧ k ≤ esize[i] do
27 e := embs[i][k] (pos, ) := nextPosGap[e] . 2nd element unused
28 while v < |ss| ∧ pos ≤ lastPosMap[id][a] ∧ st[pos] ≤ st[e] +N do
29 if ss[pos] = a then
30 nEmb := nEmb+ 1 embs[j][nEmb] := pos
31 if not isIncremented ∧ st[pos]− st[id] ≥W then
32 isIncremented := true γs(P:ψ) := γs(P:ψ) + 1

33 (u, v) := nextPosGap[pos] . Precomputed structure
34 if u ≤ |ss| then
35 for b ∈ Domain(Pψ+1) do
36 l := min

(
v, |ss|

)
37 if

(
freqMap[l][b] > freqMap[u− 1][b]

)
∧ not

isV isited
[
b
]
then

38 isV isited
[
b
]

:= true
39 freq[b] := freq[b] + 1 . Projected frequency

40 pos := pos+ 1

41 k := k + 1

42 if nEmb > 0 then
43 startv[j] := id esize[j] := nEmb j := j + 1

44 φ := φ+ ϕ ϕ := j − φ
45 return freq



presents results for different settings while the former shows the performance
profiles [8] for both the memory consumption and the computation time.

We can observe that episodeSupport outperforms both decomposed ap-
proaches in terms of execution time and memory consumption for most of the
instances. Both gains become more important when the sequence is large. Be-
sides, decomposed approaches cannot process the largest sequences regarding
the time limitation imposed.

Comparison with Specialized Approaches Experiments on Unix dataset
with a threshold of 5% and a maximum span of 10 are provided in [14]2. Com-
parisons of these specialized approaches with ours are presented in Table 2. It
shows that episodeSupport seems competitive with MINEPI+ and EMMA. For
the largest sequences (USER8 and USER6), episodeSupport is the most effi-
cient. For some instances (USER5 and USER7) that are quickly solved, the cost
of initializing the data structures with our approach is higher than the gain ob-
tained. In general, the gain becomes more important when sequences are larger
or harder to solve. Finally, given that the implementation of MINEPI+ and
EMMA is missing, it is difficult to perform a fair comparison of the approaches.

Handling Additional Constraints Additional constraints can be considered
in order to define properties that the patterns must satisfy. No modification of
episodeSupport is required. Results of experiments are presented in Table 3.
The goal was to find frequent episodes (θ ≥ 20) having a maximum length of 6,
containing at least three Q (atLeast constraint) but no D (exclusion), and sat-
isfying the regex M(A|T).∗F (regular). Two episodes (MTQQQF and MAQQQF) have
been discovered. As observed, the additional constraints reduce the execution
time as CP takes advantage of the stronger filtering to reduce the search space.
This reduction would not be observed with a generate and filter approach.

5 Conclusion and Perspective

There is a growing interest for solving data-mining challenges with CP. In ad-
dition to the flexibility it brings, recent works have shown that it can provide
similar performances, or even better, than specialized algorithms [2, 3]. So far
CP has not been considered yet for mining frequent episodes. We introduced
two global constraints (episodeSupport) for solving this problem with or with-
out time-stamps. It relies on techniques used for SPM such as pattern growth,
pseudo projections and reversible vectors but also on new ideas specific to this
problem for improving the efficiency of the filtering algorithms (early projection
stopping, position caching and efficient frequency computation). Experimental
results have shown that our approach provides better performances in terms of
execution time and memory consumption than state-of-the-art methods, with
the additional benefits that it can accommodate additional constraints.

2 Results provided in [14] are directly used since the implementation is not available.



(a) Results for Uniprot (2452 instances, where n ∈ [100, 30000]).

(b) Results for Ubiqlog (21 instances, with gap[100, 3600] and span[1, 35000]).

Fig. 3: Performance profiles (θ = 5%, maximum size of 5, timeout of 600 seconds).

Table 1: Execution time and memory usage for several datasets and thresholds.
Patterns having a maximum size of 5 gap[100, 3600] and span[1, 35000]
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100 437048 45 34 9.08 2.45
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e
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72
×

30

300 10 107 35 0.24 0.20
90 533395 46 38 8.68 1.97 100 3113 999 469 67.83 29.53
70 645834 35 16 9.16 1.67 50 10481 1226 505 118.56 57.48
50 1128537 67 43 13.29 2.59 20 51108 1110 599 204.98 80.93

Q
54
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U
4

11
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3
×

20
1110 0 1969 31 0.11 0.02

9M
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m
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e

11
28
×

45
10 6724 244 139 1.00 1.35

999 157003 2057 33 113.32 3.49 8 11626 318 173 1.35 0.71
777 1178939 1980 33 657.68 14.90 6 19340 339 142 1.42 0.86
555 1515789 1849 31 1414.83 18.41 4 23225 349 138 1.48 1.05

Q
9I

7U
4

18
14

1
×

20
1814 336842 6898 38 946.54 20.90

8M
co

m
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e

33
05
×

44
300 3734 1888 506 197.16 143.94

1632 505263 6426 40 1146.22 24.20 100 38061 3301 1179 745.41 488.32
1269 705640 6819 21 1674.80 22.63 50 123133 3594 1496 1489.18 740.97
907 1515791 6819 21 timeout 52.79 20 516478 3859 1309 timeout 1163.34

Table 2: Comparison with MINEPI+ and EMMA (θ = 5% and W = 10).

Databases Features Execution Time (s)

name |s| |Σ| nSol M
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I+
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A
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is
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pp
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t

name |s| |Σ| nSol M
IN

E
P

I+

E
M

M
A

ep
is

od
e

Su
pp

or
t

USER3 16866 273 46 13.2 0.4 0.173 USER5 34821 563 37 4.8 0.3 0.724
USER7 17329 449 25 0.6 0.2 0.563 USER4 37817 479 48 165.3 1.3 0.636
USER2 18738 310 38 43.3 0.6 0.259 USER8 54042 706 40 1362.3 9.8 2.214
USER1 19881 288 57 93.7 1.2 0.232 USER6 64152 609 68 2853.3 14.6 2.178

Table 3: Additional constraints on Q08379 Protein (Uniprot).
Only episodeSupport + exclusion + atLeast + regular

nSol: 46221933 time(s): 83.2 nSol: 33388768 time(s): 62.6 nSol: 104536 time(s): 0.642 nSol: 2 time(s): 0.002
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