Skip to main content

Detecting Hypopnea and Obstructive Apnea Events Using Convolutional Neural Networks on Wavelet Spectrograms of Nasal Airflow

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Abstract

We present a novel approach for detecting hypopnea and obstructive apnea events during sleep, using a single channel nasal airflow from polysomnography recordings, applying a Convolutional Neural Network (CNN) to a 2-D image wavelet spectrogram of the nasal signal. We compare this approach to directly training a 1-D CNN on the raw nasal airflow signal. The evaluation was conducted on a large dataset consisting of 69,264 examples from 1,507 subjects. Our results showed that both approaches achieved good accuracy, with the 2-D CNN outperforming the 1-D CNN. The higher accuracy and the less complex architecture of the 2-D CNN show that converting biological signals into spectrograms and using them in conjunction with CNNs is a promising method for sleep apnea recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Epstein, L.J., Kristo, D., Strollo, P.J., et al.: Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 5(03), 263–276 (2009)

    Google Scholar 

  2. Punjabi, N.M.: The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5(2), 136–143 (2008)

    Article  Google Scholar 

  3. Sanna, A.: Obstructive sleep apnoea, motor vehicle accidents, and work performance. Chronic Respir. Dis. 10(1), 29–33 (2013)

    Article  Google Scholar 

  4. Marin, J.M., Carrizo, S.J., Vicente, E., Agusti, A.G.: Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464), 1046–1053 (2005)

    Article  Google Scholar 

  5. Yaggi, H.K., Concato, J., Kernan, W.N., Lichtman, J.H., Brass, L.M., Mohsenin, V.: Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 353(19), 2034–2041 (2005). PMID: 16282178

    Article  Google Scholar 

  6. Yumino, D., Bradley, T.D.: Central sleep apnea and Cheyne-Stokes respiration. Proc. Am. Thorac. Soc. 5(2), 226–236 (2008)

    Article  Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Abdel-Hamid, O., Mohamed, A.R., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4277–4280, March 2012

    Google Scholar 

  9. Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition with convolutional neural networks. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 3304–3308, November 2012

    Google Scholar 

  10. Biswal, S., Kulas, J., Sun, H., et al.: SLEEPNET: automated sleep staging system via deep learning. arXiv preprint arXiv:1707.08262 (2017)

  11. Maali, Y., Al-Jumaily, A.: Automated detecting sleep apnea syndrome: a novel system based on genetic SVM. In: 2011 11th International Conference on Hybrid Intelligent Systems (HIS), pp. 590–594, December 2011

    Google Scholar 

  12. Maali, Y., Al-Jumaily, A.: Hierarchical parallel PSO-SVM based subject-independent sleep apnea classification. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7666, pp. 500–507. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34478-7_61

    Chapter  Google Scholar 

  13. Koley, B.L., Dey, D.: Automatic detection of sleep apnea and hypopnea events from single channel measurement of respiration signal employing ensemble binary SVM classifiers. Measurement 46(7), 2082–2092 (2013)

    Article  Google Scholar 

  14. Waxman, J.A., Graupe, D., Carley, D.W.: Automated prediction of apnea and hypopnea, using a LAMSTAR artificial neural network. Am. J. Respir. Crit. Care Med. 181(7), 727–733 (2010)

    Article  Google Scholar 

  15. Tagluk, M.E., Akin, M., Sezgin, N.: Classıfıcation of sleep apnea by using wavelet transform and artificial neural networks. Expert Syst. Appl. 37(2), 1600–1607 (2010)

    Article  Google Scholar 

  16. Almazaydeh, L., Elleithy, K., Faezipour, M., Abushakra, A.: Apnea detection based on respiratory signal classification. Procedia Comput. Sci. 21, 310–316 (2013)

    Article  Google Scholar 

  17. Hsu, C.C., Shih, P.T.: A novel sleep apnea detection system in electroencephalogram using frequency variation. Expert Syst. Appl. 38(5), 6014–6024 (2011)

    Article  Google Scholar 

  18. Avcı, C., Akbaş, A.: Sleep apnea classification based on respiration signals by using ensemble methods. Bio-Med. Mater. Eng. 26(s1), S1703–S1710 (2015)

    Article  Google Scholar 

  19. Haidar, R., Koprinska, I., Jeffries, B.: Sleep apnea event detection from nasal airflow using convolutional neural networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 819–827. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_83

    Chapter  Google Scholar 

  20. Dean, D.A., Goldberger, A.L., Mueller, R., et al.: Scaling up scientific discovery in sleep medicine: the National Sleep Research Resource. Sleep 39(5), 1151–1164 (2016)

    Article  Google Scholar 

  21. Tibshirani, R., James, G., Witten, D., Hastie, T.: An introduction to statistical learning: with applications in R (2013)

    Google Scholar 

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  23. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  24. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Kinga, D., Adam, J.B.: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  26. Srivastava, N., Hinton, G.E., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Buza, K., Schmidt-Thieme, L.: Motif-based classification of time series with Bayesian networks and SVMs. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds.) Advances in Data Analysis, Data Handling and Business Intelligence. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01044-6_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by Sydney Informatics Hub’s High Performance Computing Services, funded by the University of Sydney.

The Multi-Ethnic Study of Atherosclerosis (MESA) is supported by contracts N01-HC-95159 through N01-HC-95169 from the National Heart, Lung, and Blood Institute (NHLBI) at the National Institutes of Health. MESA Sleep was supported by NHLBI R01 L098433.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen McCloskey , Rim Haidar , Irena Koprinska or Bryn Jeffries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McCloskey, S., Haidar, R., Koprinska, I., Jeffries, B. (2018). Detecting Hypopnea and Obstructive Apnea Events Using Convolutional Neural Networks on Wavelet Spectrograms of Nasal Airflow. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics