Skip to main content

DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection

  • Conference paper
  • First Online:
Book cover Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Included in the following conference series:

Abstract

This paper presents a generic anomaly detection approach for time-series data. Existing anomaly detection approaches have several drawbacks such as a large number of false positives, parameters tuning difficulties, the need for a labeled dataset for training, use-case restrictions, or difficulty of use. We propose DeepAD, an anomaly detection framework that leverages a plethora of time-series forecasting models in order to detect anomalies more accurately, irrespective of the underlying complex patterns to be learnt. Our solution does not rely on the labels of the anomalous class for training the model, nor for optimizing the threshold based on highest detection given the labels in the training data. We compare our framework against EGADS framework on real and synthetic data with varying time-series characteristics. Results show significant improvements on average of 25% and up to \(40-50\)% in \(F_1{\text{- }}score\), precision, and recall on the Yahoo Webscope Benchmark.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No. 700381 (ASGARD) and No. 671625 (CogNet).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ruder.io/optimizing-gradient-descent/index.html#rmsprop.

  2. 2.

    https://github.com/twitter/AnomalyDetection.

  3. 3.

    Yahoo! Webscope dataset ydata-labeled-time-series-anomalies-v1_0. http://webscope.sandbox.yahoo.com.

References

  1. Aggarwal, C.C.: An introduction to outlier analysis. In: Outlier analysis, pp. 1–40. Springer, New York (2013)

    Google Scholar 

  2. Al-Jarrah, O., Arafat, A.: Network intrusion detection system using neural network classification of attack behavior. J. Adv. Inf. Technol. 6(1) (2015)

    Google Scholar 

  3. Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vector machines for unsupervised anomaly detection. In: ACM SIGKDD, pp. 8–15 (2013)

    Google Scholar 

  4. Buda, T.S., Assem, H., Xu, L.: Ade: an ensemble approach for early anomaly detection. In: IFIP/IEEE IM, pp. 442–448 (2017)

    Google Scholar 

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  6. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: IEEE DSAA, pp. 1–7 (2015)

    Google Scholar 

  7. Dixon, W.J., Massey Frank, J.: Introduction to Statistical Analsis. McGraw-Hill Book Company Inc., New York (1950)

    Google Scholar 

  8. Dunlop, N.: Statistical Calculations, pp. 203–224. Apress, Berkeley (2015)

    Chapter  Google Scholar 

  9. Görnitz, N., Kloft, M.M., Rieck, K., Brefeld, U.: Toward supervised anomaly detection. J. Artif. Intell. Res. 46, 235–262 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Hawkins, D.M.: Identification of outliers, vol. 11. Springer, Netherlands (1980)

    Book  Google Scholar 

  11. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated time-series anomaly detection. In: ACM SIGKDD, pp. 1939–1947 (2015)

    Google Scholar 

  12. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection (2016). arXiv preprint arXiv:1607.00148

  13. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: ESANN (2015)

    Google Scholar 

  14. Noto, K., Brodley, C., Slonim, D.: Frac: a feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Min. Knowl. Discov. 25(1), 109–133 (2012)

    Article  MathSciNet  Google Scholar 

  15. Rajasegarar, S., Leckie, C., Palaniswami, M.: Hyperspherical cluster based distributed anomaly detection in wireless sensor networks. J. Parallel Distrib. Comput. 74(1), 1833–1847 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodora Sandra Buda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buda, T.S., Caglayan, B., Assem, H. (2018). DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics