Skip to main content

Embedding Knowledge Graphs Based on Transitivity and Asymmetry of Rules

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10938))

Abstract

Representation learning of knowledge graphs encodes entities and relation types into a continuous low-dimensional vector space, learns embeddings of entities and relation types. Most existing methods only concentrate on knowledge triples, ignoring logic rules which contain rich background knowledge. Although there has been some work aiming at leveraging both knowledge triples and logic rules, they ignore the transitivity and asymmetry of logic rules. In this paper, we propose a novel approach to learn knowledge representations with entities and ordered relations in knowledges and logic rules. The key idea is to integrate knowledge triples and logic rules, and approximately order the relation types in logic rules to utilize the transitivity and asymmetry of logic rules. All entries of the embeddings of relation types are constrained to be non-negative. We translate the general constrained optimization problem into an unconstrained optimization problem to solve the non-negative matrix factorization. Experimental results show that our model significantly outperforms other baselines on knowledge graph completion task. It indicates that our model is capable of capturing the transitivity and asymmetry information, which is significant when learning embeddings of knowledge graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Pritsker, E.W., Cohen, W., Minkov, E.: Learning to identify the best contexts for knowledge-based WSD. In: EMNLP, pp. 1662–1667 (2015)

    Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD Conference, pp. 1247–1250 (2008)

    Google Scholar 

  4. Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., Weld, D.S.: Knowledge-based weak supervision for information extraction of overlapping relations. In: ACL, pp. 541–550 (2011)

    Google Scholar 

  5. Bordes, A., Usunier, N., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795. Curran Associates Inc. (2013)

    Google Scholar 

  6. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs, pp. 1955–1961 (2015)

    Google Scholar 

  7. Welbl, J., Riedel, S., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016). JMLR.org

  8. Riedel, S., Yao, L., Mccallum, A., Marlin, B.M.: Relation extraction with matrix factorization and universal schemas (2013)

    Google Scholar 

  9. Chang, K.W., Yih, W.T., Yang, B., Meek, C.: Typed tensor decomposition of knowledge bases for relation extraction. In: EMNLP (2014)

    Google Scholar 

  10. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  11. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  12. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. Computer Science (2015)

    Google Scholar 

  13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 257–269 (2011)

    Google Scholar 

  14. Bouchard, G., Singh, S., Trouillon, T.: On approximate reasoning capabilities of low-rank vector spaces (2015)

    Google Scholar 

  15. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: ACM SIGKDD, pp. 601–610 (2014)

    Google Scholar 

  16. Neelakantan, A., Roth, B., Mccallum, A.: Compositional vector space models for knowledge base completion. Computer Science, 1–16 (2015)

    Google Scholar 

  17. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL, IJCNLP, pp. 687–696 (2015)

    Google Scholar 

  18. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In: International Conference on Artificial Intelligence, pp. 1859–1865. AAAI Press (2015)

    Google Scholar 

  19. Rocktschel, T., Singh, S., Riedel, S.: Injecting logical background knowledge into embeddings for relation extraction. In: NAACL, pp. 648–664 (2014)

    Google Scholar 

  20. Shu, G., Quan, W., Wang, L., Wang, B., Li, G.: Jointly embedding knowledge graphs and logical rules. In: EMNLP, pp. 192–202 (2016)

    Google Scholar 

  21. Vendrov, I., Kiros, R., Fidler, S., Urtasun, R.: Order-embeddings of images and language (2015)

    Google Scholar 

  22. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp. 926–934. Curran Associates Inc. (2013)

    Google Scholar 

  23. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756 (2007)

    Article  MathSciNet  Google Scholar 

  24. Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: an optimal gradient method for nonnegative matrix factorization. TSP 60(6), 2882–2898 (2012)

    MathSciNet  Google Scholar 

  25. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 535–541. MIT Press (2000)

    Google Scholar 

  26. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495 (2007)

    Article  Google Scholar 

  27. Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-negative matrix/tensor factorization. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 793–802. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72395-0_97

    Chapter  Google Scholar 

  28. Krompa, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge graphs, vol. 107(8), pp. 640–655 (2015)

    Google Scholar 

  29. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816. Omnipress (2011)

    Google Scholar 

  30. Guu, K., Miller, J., Liang, P.: Traversing knowledge graphs in vector space. Computer Science (2015)

    Google Scholar 

  31. Garca-Durn, A., Bordes, A., Usunier, N.: Composing relationships with translations (2015)

    Google Scholar 

Download references

Acknowledgements.

We thank the National Key Research and Development Program of China (2016YFB0201900), National Natural Science Foundation of China (U1611262), Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306028), Pearl River Science and Technology New Star of Guangzhou, and Guangdong Province Key Laboratory of Big Data Analysis and Processing for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hankui Zhuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M., Rong, E., Zhuo, H., Zhu, H. (2018). Embedding Knowledge Graphs Based on Transitivity and Asymmetry of Rules. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10938. Springer, Cham. https://doi.org/10.1007/978-3-319-93037-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93037-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93036-7

  • Online ISBN: 978-3-319-93037-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics