Skip to main content

A New Local Density for Density Peak Clustering

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10939))

Abstract

Density peak clustering is able to recognize clusters of arbitrary shapes, so it has attracted attention in academic community. However, existing density peak clustering algorithms prefer to select cluster centers from dense regions and thus easily ignore clusters from sparse regions. To solve this problem, we redefine the local density of a point as the number of points whose neighbors contain this point. This idea is based on our following finding: whether in dense clusters or in sparse clusters, a cluster center would have a relatively high local density calculated by our new measure. Even in a sparse region, there may be some points with high local densities in our definition, thus one of these points can be selected to be the center of this region in subsequent steps and this region is then detected as a cluster. We apply our new definition to both density peak clustering and the combination of density peak clustering with agglomerative clustering. Experiments on benchmark datasets show the effectiveness of our methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  2. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition I. IEEE Trans. Syst. Man Cybern. Part B 29(6), 778–785 (1999)

    Article  Google Scholar 

  3. Brecheisen, S., Kriegel, H.-P., Pfeifle, M.: Parallel density-based clustering of complex objects. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 179–188. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_22

    Chapter  Google Scholar 

  4. Chen, G., Zhang, X., Wang, Z.J., Li, F.: Robust support vector data description for outlier detection with noise or uncertain data. Knowl.-Based Syst. 90, 129–137 (2015)

    Article  Google Scholar 

  5. Cheng, D., Zhu, Q., Huang, J., Yang, L., Wu, Q.: Natural neighbor-based clustering algorithm with local representatives. Knowl.-Based Syst. 123, 238–253 (2017)

    Article  Google Scholar 

  6. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  7. Du, M., Ding, S., Jia, H.: Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl.-Based Syst. 99, 135–145 (2016)

    Article  Google Scholar 

  8. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: ICDM 2003, pp. 47–58. SIAM (2003)

    Chapter  Google Scholar 

  9. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD 1996. vol. 96, pp. 226–231 (1996)

    Google Scholar 

  10. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  12. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  14. Jing, L., Ng, M.K., Xu, J., Huang, J.Z.: Subspace clustering of text documents with feature weighting K-means algorithm. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 802–812. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_94

    Chapter  Google Scholar 

  15. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. IEEE Comput. 32(8), 68–75 (1999)

    Article  Google Scholar 

  16. Liu, Y., Ma, Z., Yu, F.: Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy. Knowl.-Based Syst. 133, 208–220 (2017)

    Article  Google Scholar 

  17. Mehmood, R., El-Ashram, S., Bie, R., Dawood, H., Kos, A.: Clustering by fast search and merge of local density peaks for gene expression microarray data. Sci. Rep. 7 (2017)

    Article  Google Scholar 

  18. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: AISTATS 2001 (2001)

    Google Scholar 

  19. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20) (1996)

    Google Scholar 

  20. Nie, F., Wang, X., Jordan, M.I., Huang, H.: The constrained Laplacian rank algorithm for graph-based clustering. In: AAAI 2016, pp. 1969–1976 (2016)

    Google Scholar 

  21. Rezaei, M., Fränti, P.: Set-matching methods for external cluster validity. IEEE Trans. Knowl. Data Eng. 28(8), 2173–2186 (2016)

    Article  Google Scholar 

  22. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  23. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: WACV 1994, pp. 138–142. IEEE (1994)

    Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  25. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)

    Article  Google Scholar 

  26. Xie, J., Gao, H., Xie, W., Liu, X., Grant, P.W.: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf. Sci. 354, 19–40 (2016)

    Article  Google Scholar 

  27. Xu, J., Wang, G., Deng, W.: Denpehc: density peak based efficient hierarchical clustering. Inf. Sci. 373, 200–218 (2016)

    Article  Google Scholar 

  28. Zaïane, O.R., Foss, A., Lee, C.-H., Wang, W.: On data clustering analysis: scalability, constraints, and validation. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 28–39. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47887-6_4

    Chapter  MATH  Google Scholar 

  29. Zhang, W., Wang, X., Zhao, D., Tang, X.: Graph degree linkage: agglomerative clustering on a directed graph. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 428–441. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_31

    Chapter  Google Scholar 

  30. Zhang, W., Li, J.: Extended fast search clustering algorithm: widely density clusters, no density peaks. arXiv preprint arXiv:1505.05610 (2015)

  31. Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Inf. Sci. 152, 217–230 (2003)

    Article  MathSciNet  Google Scholar 

  32. Zhu, W., Wang, F.Y.: On three types of covering-based rough sets. IEEE Trans. Knowl. Data Eng. 19(8), 1131–1144 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant No. 61772120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Huang, T., Cai, Z., Zhu, W. (2018). A New Local Density for Density Peak Clustering. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93040-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics