Skip to main content

A Joint Optimization Approach for Personalized Recommendation Diversification

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10939))

Included in the following conference series:

Abstract

In recommendation systems, items of interest are often classified into categories such as genres of movies. Existing research has shown that diversified recommendations can improve real user experience. However, most existing methods do not consider the fact that users’ levels of interest (i.e., user preferences) in different categories usually vary, and such user preferences are not reflected in the diversified recommendations. We propose an algorithm that considers user preferences for different categories when recommending diversified results, and refer to this problem as personalized recommendation diversification. In the proposed algorithm, a model that captures user preferences for different categories is optimized jointly toward both relevance and diversity. To provide the proposed algorithm with informative training labels and effectively evaluate recommendation diversity, we also propose a new personalized diversity measure. The proposed measure overcomes limitations of existing measures in evaluating recommendation diversity: existing measures either cannot effectively handle user preferences for different categories, or cannot evaluate both relevance and diversity at the same time. Experiments using two real-world datasets confirm the superiority of the proposed algorithm, and show the effectiveness of the proposed measure in capturing user preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM, pp. 5–14. ACM (2009)

    Google Scholar 

  2. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: ISMIR, vol. 2, p. 10 (2011)

    Google Scholar 

  3. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR, pp. 335–336 (1998)

    Google Scholar 

  4. Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR, pp. 659–666. ACM (2008)

    Google Scholar 

  5. Dang, V., Croft, W.B.: Diversity by proportionality: an election-based approach to search result diversification. In: SIGIR, pp. 65–74. ACM (2012)

    Google Scholar 

  6. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)

    Google Scholar 

  7. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM, pp. 263–272. IEEE (2008)

    Google Scholar 

  8. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: SIGKDD, pp. 426–434. ACM (2008)

    Google Scholar 

  9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS (2013)

    Google Scholar 

  10. Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-armed bandits. In: ICML, pp. 784–791. ACM (2008)

    Google Scholar 

  11. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)

    Google Scholar 

  12. Sakai, T., Song, R.: Evaluating diversified search results using per-intent graded relevance. In: SIGIR, pp. 1043–1052. ACM (2011)

    Google Scholar 

  13. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44593-5_25

    Chapter  Google Scholar 

  14. Sun, Y., Yuan, N.J., Wang, Y., Xie, X., McDonald, K., Zhang, R.: Contextual intent tracking for personal assistants. In: SIGKDD, pp. 273–282. ACM (2016)

    Google Scholar 

  15. Sun, Y., Yuan, N.J., Xie, X., McDonald, K., Zhang, R.: Collaborative nowcasting for contextual recommendation. In: WWW, pp. 1407–1418 (2016)

    Google Scholar 

  16. Sun, Y., Yuan, N.J., Xie, X., McDonald, K., Zhang, R.: Collaborative intent prediction with real-time contextual data. TOIS 35(4), 30:1–30:33 (2017)

    Article  Google Scholar 

  17. Tran, T., Phung, D., Venkatesh, S.: Neural choice by elimination via highway networks. In: Cao, H., Li, J., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9794, pp. 15–25. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42996-0_2

    Chapter  Google Scholar 

  18. Vargas, S., Baltrunas, L., Karatzoglou, A., Castells, P.: Coverage, redundancy and size-awareness in genre diversity for recommender systems. In: RecSys (2014)

    Google Scholar 

  19. Wang, X., Wen, J.R., Dou, Z., Sakai, T., Zhang, R.: Search result diversity evaluation based on intent hierarchies. TKDE 30(1), 156–169 (2018)

    Google Scholar 

  20. Wang, Y., Yuan, N.J., Sun, Y., Qin, C., Xie, X.: App download forecasting: an evolutionary hierarchical competition approach. In: IJCAI (2017)

    Google Scholar 

  21. Xia, L., Xu, J., Lan, Y., Guo, J., Cheng, X.: Modeling document novelty with neural tensor network for search result diversification. In: SIGIR (2016)

    Google Scholar 

  22. Yuan, M., Pavlidis, Y., Jain, M., Caster, K.: Walmart online grocery personalization: behavioral insights and basket recommendations. In: Link, S., Trujillo, J.C. (eds.) ER 2016. LNCS, vol. 9975, pp. 49–64. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47717-6_5

    Chapter  Google Scholar 

  23. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW, pp. 22–32. ACM (2005)

    Google Scholar 

Download references

Acknowledgment

This work is supported by Australian Research Council (ARC) Future Fellowships Project FT120100832 and Discovery Project DP180102050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Qi, J., Ramamohanarao, K., Sun, Y., Li, B., Zhang, R. (2018). A Joint Optimization Approach for Personalized Recommendation Diversification. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93040-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics