Skip to main content

A Game-Theoretic Adversarial Approach to Dynamic Network Prediction

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10939))

Included in the following conference series:

  • 3474 Accesses

Abstract

Predicting the evolution of a dynamic network—the addition of new edges and the removal of existing edges—is challenging. In part, this is because: (1) networks are often noisy; (2) various performance measures emphasize different aspects of prediction; and (3) it is not clear which network features are useful for prediction. To address these challenges, we develop a novel framework for robust dynamic network prediction using an adversarial formulation that leverages both edge-based and global network features to make predictions. We conduct experiments on five distinct dynamic network datasets to show the superiority of our approach compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E., Dunlavy, D.M., Kolda, T.G.: A scalable optimization approach for fitting canonical tensor decompositions. J. Chemom. 25(2), 67–86 (2011)

    Article  Google Scholar 

  2. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  4. Asif, K., Xing, W., Behpour, S., Ziebart, B.D.: Adversarial cost-sensitive classification. In: International Conference on UAI (2015)

    Google Scholar 

  5. Bader, B.W., Kolda, T.G., et al.: MATLAB Tensor Toolbox Version 2.6. Available online, February 2015

    Google Scholar 

  6. Bringmann, B., Berlingerio, M., Bonchi, F., Gionis, A.: Learning and predicting the evolution of social networks. IEEE Intell. Syst. 25(4), 26–35 (2010)

    Article  Google Scholar 

  7. Caceres, R.S., Berger-Wolf, T., Grossman, R.: Temporal scale of processes in dynamic networks. In: ICDMW, pp. 925–932. IEEE (2011)

    Google Scholar 

  8. Crofoot, M.C., Kays, R.W., Wikelski, M.: Data from: shared decision-making drives collective movement in wild baboons (2015)

    Google Scholar 

  9. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. TKDD 5(2), 10 (2011)

    Article  Google Scholar 

  10. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  11. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual (2015)

    Google Scholar 

  12. Hanneke, S., Fu, W., Xing, E.P., et al.: Discrete temporal models of social networks. Electron. J. Stat. 4, 585–605 (2010)

    Article  MathSciNet  Google Scholar 

  13. Holme, P., Saramäki, J. (eds.): Temporal Networks. Understanding Complex Systems. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36461-7

    Book  Google Scholar 

  14. Huang, Z., Lin, D.K.: The time-series link prediction problem with applications in communication surveillance. INFORMS J. Comput. 21(2), 286–303 (2009)

    Article  Google Scholar 

  15. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kuchaiev, O., Stevanović, A., Hayes, W., Pržulj, N.: Graphcrunch 2: software tool for network modeling, alignment and clustering. BMC Bioinform. 12(1), 24 (2011)

    Article  Google Scholar 

  17. Lahiri, M., Berger-Wolf, T.Y.: Structure prediction in temporal networks using frequent subgraphs. In: CIDM 2007, pp. 35–42. IEEE (2007)

    Google Scholar 

  18. Leifeld, P., Cranmer, S.J., Desmarais, B.A.: Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals. J. Stat. Softw. (2015)

    Google Scholar 

  19. Leifeld, P., Cranmer, S.J., Desmarais, B.A.: btergm: Temporal exponential random graph models by bootstrapped pseudolikelihood. R Package v. 1.9.0 (2017)

    Google Scholar 

  20. Li, J., Asif, K., Wang, H., Ziebart, B.D., Berger-Wolf, T.: Adversarial sequence tagging. In: IJCAI (2016)

    Google Scholar 

  21. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  22. McMahan, H.B., Gordon, G.J., Blum, A.: Planning in the presence of cost functions controlled by an adversary. In: Proceedings of the ICML, pp. 536–543 (2003)

    Google Scholar 

  23. Nagrecha, S., Chawla, N.V., Bunke, H.: Recurrent subgraph prediction. In: Proceedings of the 2015 ASONAM, pp. 416–423. ACM (2015)

    Google Scholar 

  24. Parambath, S.P., Usunier, N., Grandvalet, Y.: Optimizing f-measures by cost-sensitive classification. In: Advances in NIPS, pp. 2123–2131 (2014)

    Google Scholar 

  25. Potgieter, A., April, K.A., Cooke, R.J., Osunmakinde, I.O.: Temporality in link prediction: understanding social complexity. Emerg.: Complex. Org. 11(1), 69 (2009)

    Google Scholar 

  26. Pujari, M., Kanawati, R.: Link prediction in complex networks by supervised rank aggregation. In: ICTAI 2012, vol. 1, pp. 782–789. IEEE (2012)

    Google Scholar 

  27. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD dataset cambridge/haggle (v. 2009-05-29). Downloaded from http://crawdad.org/cambridge/haggle/20090529. Accessed May 2009

  28. Shi, Z., Zhang, X., Yu, Y.: Bregman divergence for stochastic variance reduction: saddle-point and adversarial prediction. In: Advances in Neural Information Processing Systems, pp. 6033–6043 (2017)

    Google Scholar 

  29. Strandburg-Peshkin, A., Farine, D.R., Couzin, I.D., Crofoot, M.C.: Shared decision-making drives collective movement in wild baboons. Science 348(6241), 1358–1361 (2015)

    Article  Google Scholar 

  30. Wang, H., Xing, W., Asif, K., Ziebart, B.: Adversarial prediction games for multivariate losses. In: Advances in NIPS, pp. 2710–2718 (2015)

    Google Scholar 

  31. Yang, Y., Chawla, N.V., Basu, P., Prabhala, B., La Porta, T.: Link prediction in human mobility networks. In: ASONAM, pp. 380–387. IEEE (2013)

    Google Scholar 

  32. Yu, W., Cheng, W., Aggarwal, C.C., Chen, H., Wang, W.: Link prediction with spatial and temporal consistency in dynamic networks. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 3343–3349. AAAI Press (2017)

    Google Scholar 

  33. Zhu, L., Guo, D., Yin, J., Ver Steeg, G., Galstyan, A.: Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Trans. Knowl. Data Eng. 28(10), 2765–2777 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Ziebart, B., Berger-Wolf, T. (2018). A Game-Theoretic Adversarial Approach to Dynamic Network Prediction. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93040-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics