
Real-time DNN-based Face Identification for the
Blind

Jhilik Bhattacharya1, Francesco Guzzi2, Stefano Marsi2, Sergio Carrato2, and
Giovanni Ramponi2?

1 Thapar University, Patiala, India
2 University of Trieste, Trieste, Italy

Abstract. We present some results from an ongoing project about face
detection and recognition in an apparatus usable by a visually impaired
person. Specifically, we explore the usable equipment and we experiment
on the realization of three prototypes that give the opportunity of dealing
with different topics, ranging from the architecture of the network to
database creation, from the reliability of the identification results to real-
time operation issues.

Keywords: Face identification, convolutional neural networks, visual
impairments, persons with disabilities.

1 Introduction

We present in this paper some results from an ongoing project that studies
face detection/recognition methods to build an apparatus usable by a visually
impaired person.

Notwithstanding the huge progress of computer vision tools, especially since
the advent of Deep Neural Networks (DNNs), techniques for face recognition
that may help blind users in their relational life have not yet found practical
usage. The layman perceives that this problem has been already solved, since
many tools have been recently made available in the consumer world (especially
in social networks) to determine the identity of people. However, the reliability
that is required for an apparatus to be used by persons with disabilities (PwD)
is the same as the one required by a professional user (say, a bank), while its cost
must be much lower: the reliability/cost ratio is far from satisfactory presently.

A peculiarity of the system we are realizing, which must be usable by a blind
person, is the availability of a limited number of faces for the training of the
network [1]. For this reason, we decided to fine-tune an existing DNN rather
than train one from scratch. The same acquisition hardware will be used in the
two different operating phases: during the implementation of the user’s friends

? This work is supported by the University of Trieste - Finanziamento di Ateneo per
progetti di ricerca scientica - FRA 2016, and by a private donation in memory of
Angelo Soranzo (1939-2012). The authors also thank Eugenio Culurciello and Alfredo
Canziani for kindly providing the basenet, and Marko Vitez for the thnets library.



2 Bhattacharya et al.

database (recording a video of the friend) and during the so called inference (i.e.
the operative) phase of the device.

Section II describes different approaches that can be followed for fine-tuning;
we provide detailed information about the involved procedures and the possi-
bility of using single or multiple networks. Section III discusses three different
realizations of the system, aiming at achieving real-time operation. Some quanti-
tative data about the effectiveness and reliability of the identification is provided
in Section IV.

2 Face Verification Approaches

The scenario we consider in this phase of the project is the one of a blind person
who has planned to meet a friend at a predefined spot and wishes to be able to
recognize him as early as possible during the approach. It can be cast as a 1-
to-1 face verification task: the equipment has to acquire the scene, detect faces,
compare each detected face to the faces representing the class of the specific
friend the user has to meet, and inform the user if a positive answer results.
Information about the reliability of the verification may be provided too, e.g. as
a percent number. Before the meeting the user must activate a classifier dedicated
to that specific friend. However, the scenario can also be cast in a different way,
as a 1-to-N open recognition task: each detected face is compared to N classes
representing N possible friends of the user’s, and a single (but more complex)
classifier is adopted; the recognition is deemed open because the system must be
able to also label the face as not belonging at all to the set of friends [2]. In this
1-to-N context, too, some information may be provided to the user about the
reliability of the identification; moreover, a suitable threshold will be needed to
label out-of-the-set faces. We will show in the following some preliminary results
for both the 1-to-1 and the 1-to-N approaches.

We take three different approaches towards handling the identification scena-
rio, utilizing a feature extractor and distance classifier, a single-class verification
network, and a multi-class verification network with class criteria threshold. In
all the cases we start from a basic deep convolutional network, a variation of
FaceNet [3], henceforth referred in this paper as the basenet. The face detection
results are hence directly fed to the various finetuned version of the basenet
developed for this work. For each of the cases further elaborated, the same
groundtruth was used.

The basenet is a feature extraction network with a length-128 feature vector
output. The duty of the network is to embed in the feature space faces that belong
to the same individual. Thus, using the basenet as a pure feature extractor and
adopting a distance classifier with a suitable threshold approach, the test feature
vector x is matched with the ground truth data to verify the face. The number
of classes activated for the ground truth comparison depends on how many faces
the user wants to identify. In order to get the minimal false positives we select an
optimal threshold (on the network classifier output) determined using an ROC
curve. We compare the result with the mean vector µ of each class and we define



Real-time DNN-based Face Identification for the Blind 3

the acceptance ratio of the result thresholding the absolute distance above the
standard deviation σ. Indeed, it has been proved that µ and σ are capable of
tackling the pose and the lighting variations.

For the single-class approach, we finetune the basenet to build a 1-to-1 face
verification system. In this case five separate networks for the five subjects are
created by adding a single classifier to the basenet. The user in this case will
be required to load the network corresponding to the person he or she wants to
meet. The network will return a verification confidence of each face it sees. It
is left to the user to accept a low confidence verification or to wait for a high
confidence one, and in general to control the flow of information the equipment
provides. Finally,in the multi class verification, we finetune the basenet to build
a 1-to-5 face verification system. In this case a five-class classifier is added to
the basenet. The network will return the confidence value of each of the five
subjects, for each face it sees.

3 System Details

The system we developed is at its early stage but is already capable to fulfill all
of the basic requirements needed:

– acquisition of a video stream from a webcam with HD resolution;
– detection of multiple faces from the scene, even if people are not perfectly

in front of the camera and the faces have some yaw, pitch and roll;
– verification of one or more candidates in the scene;
– generation of a vocal output as a synthesized voice saying the name of the

recognized faces and a confidence value.

Different implementations of the system have been realized, each having its
own peculiarities and drawbacks: a Linux x86 64 program for a PC, a Linux
(Arm-based) program for a single board computer (SBC) and an Android soft-
ware for smartphone. The first two implementations are tightly coupled, since
they basically run the same software.

The system was first programmed and tested on an Intel i7-6700, 3.4 GHz,
quad-core CPU with 16 GB RAM, Linux OS. The fine-tuning of the basenet is
carried out on this machine, within a Torch environment; the overall learning
time is, on the average, around 0.33 seconds per sample (on the CPU). The
basic system (fig. 1a) for the inference phase is composed of three modules: a
face detection tool, written in C, that utilizes the PICO [4] tool modified in
order to exploit temporal information for the reduction of the false faces; a face
verification tool, written in Lua; and an audio message synthesizer, which uses
a Linux ESPEAK module.

Adopting a single-board PC is a convenient way to port the previously des-
cribed solution on a wearable lightweight platform without having to perform
substantial changes. Of course the typical drawback of these platforms is their
lower performances. However, analyzing the vast panorama of such systems very



4 Bhattacharya et al.

interesting solutions can be discovered. Indeed, several SBCs have recently ap-
peared on the market, the most renowned being Raspberry, Udoo, Odroid, Lat-
tepanda, BeegleBone; they are released at an impressive cadence in progressively
more powerful versions. We decided to adopt an Odroid XU4 board to develop
our prototype. It can be noted that even if most developers seem to consider
Raspberry Pi 3 the best platform [5], while the Odroid XU4 currently is just
ranked 5th, this ranking is related not only to system performance, but also to
other aspects that we did not consider mandatory for the present project, such
as the platform cost, the availability of software in the Web or the presence of
communities that support software updates and forums. The most attractive
feature of the Odroid XU4 platform is its processor: the Odroid XU4 adopts a
Samsung Exynos5422 octa-core working at 2 GHz and presents performances
highly superior to those of all other competitors. High performances in our case
are fundamental in order to process the data through the DNN in real time, since
this architecture is computationally very demanding. Additionally, the presence
of an ARM Mali - T628 GPU may be very useful to further improve in the
future the processing throughput by exploiting parallel computation, thanks to
the OpenCL support. Another important aspect is the large amount of available
memory, 2 GB of embedded DDR3 RAM, which allows easy storage of both the
image data and the DNNs configuration parameters. Moreover, the memory can
be increased up to 64 GB in eMMC format, allowing much faster access with
respect to a common SD memory. Finally, two USB 3.0 ports allow us to easily
capture high-resolution video streams from two cameras, while only slower USB
2.0 ports are available for example on the Raspberry. The system currently runs
at about 1 fps. We decided to use Android as the software platform for our first
smartphone implementation, using the rear camera of the device. Some testing
has been performed on an external USB camera too, but the smartphone solu-
tion becomes very interesting specially if used as is, without external hardware.
The main advantage of smartphone-based implementations is of course their ubi-
quitous presence. This gives us the opportunity to exploit a very powerful and
sophisticated platform, without the need of designing any hardware or any low-
level software. In the preliminary implementation we are developing (fig. 1b),
for the face detection part we use the Viola-Jones (VJ) algorithm [6] already
provided in OpenCV; in particular, in order to improve the speed of detection
we use C code instead of Java, implemented using the Native Development Kit
(NDK) provided by Google. The porting of the face recognition algorithm, in
turn, has been possible thanks to the thnets library [7] freely available on the
github repository; it is a stand-alone library for Torch neural networks, and relies
on openBLAS and OpenMP. In order to fulfill these dependencies, and since part
of the code is written in assembly language for performance reasons (and is thus
strictly hardware dependent), presently we limit ourselves to Arm devices only,
that anyway represent the largest portion of the smartphone market; further
work will be necessary for the x86 Android version. Finally, for what concerns
the voice synthesis, we use the Java interface for the embedded talk system pro-
vided by Android. The mobile phone used for testing uses an octa-core Huawei



Real-time DNN-based Face Identification for the Blind 5

(a) Multiple process face verifica-
tion system, PC/Odroid prototype

(b) Android prototype

Fig. 1. Processing scheme for the tree prototypes

HiSilicon Kirin 655 SoC (Arm-v8a architecture): four cores run at 2.1 GHz and
the remaining four at 1.7 GHz. The SoC embeds even an OpenCL-ready Arm
Mali-T830 MP2 GPU, that is presently not used. In order to improve compati-
bility with many devices, all the native codes are compiled for a 32 bit Arm-v7
architecture.

4 Results

The accuracy of the three different verification systems discussed in Section 2
was tested using the same set of 1500 images, with 250 positive samples for each
subject and 250 negative samples, while the fine tuning was done using roughly
2500 images both for positives and negatives. In particular, the negative sample
test set is composed by 25 images each of 10 different individuals. There is no
intersection between the training set and the test set negative images for a single
class verification not only in terms of the samples (which is obvious) but also in
terms of the individuals.

For the distance classifier and the multi-class verification, all 1500 images
were tested, whereas for single-class verification 250 positive and 250 negative
faces were tested. The true positive and false positive rates in each case are
shown in Table 1.

It may be seen that the true positive and false alarm rates of the distance
classifier and of the single-class verifier are good on this testset, while the false



6 Bhattacharya et al.

DC MV C1 C2 C3 C4 C5

TA(%) 93 97 94.2 92.0 89.3 89.8 94.7

FA(%) 3 30 0 0 0 0 1.6

Table 1. The left part of the table shows the percent accuracy of the distance classifier
(DC) and of the multi-class verifier (MV). TA is the rate of ground-truth positive
samples correctly classified as positive, FA is the rate of negative samples uncorrectly
classified as positive ones. The right part of the table shows the percent accuracy of
the single-class verifier for classes 1...5 (the threshold of the network’s output is 0.9).

Face Detection Face Verification Total

x86 0.2 0.02 0.22

Odroid 0.08 0.8 0.9

Android 0.07 0.3 0.5

Table 2. Processing times per frame (seconds).

alarm rate of the multi-class verifier is by far too large. A basic reason may be
that the fine tuning of the classification layer for the latter , made with 10,000
images, is not sufficient for the detection of outliers. Another reason could be
that the number of classification layer is too low. In such a case it is advisable
to use the other two approaches. However, it is also noted that the distance
classifier works better with the fine-tuned network as compared to the base
feature extractor network.

It is left to the user to select the reliability threshold for the verification.
Table 1 shows results at 0.9 threshold in a scale of 0-1. If the user receives
no verification output from the system, he/she may lower the threshold for a
weak match; for example, (TA, FA) for C4 in Table 1 becomes (93, 0.8) at
0.85 threshold. It may be noted that the user can set separate thresholds for
the different single-class verifiers at the same time, or a single threshold for all
classes in case of the distance classifier.

Some real-time experiments of the entire system were run on the different
hardware versions and their average performance in terms of speed is reported
in Table 2. The actual frame rates depend on the scene content. For example,
the detection time for the VJ algorithm used for Android varies according to the
number of faces found in a frame. This is because it uses a cascade of classifiers:
if a classifier in the first layer finds something, information is passed to the other
classifiers, searching for Haar features. For the Android system used in this work,
face detection runs at about 25 fps with no face detected, while it drops to 6-
10 fps with 6 faces in the scene. Similarly, the time for verification per frame
increases with the number of faces to be verified.



Real-time DNN-based Face Identification for the Blind 7

5 Conclusions

The main indication that our results provide is that, thanks to the effectiveness
of novel DNN techniques and to the ever increasing computational power of
the available hardware, we are getting closer to the realization of effective and
usable devices. We have realised several different preliminary versions of our
system: a Linux x86 64 program for a PC, mostly used for software development
and debugging, a Linux (Arm-based) program for a single-board computer and
an Android software for smartphones. The two latter solutions are real mobile
implementation which will be given to the members of our Users Group in order
to collect information on their actual advantages and drawbacks.

References

1. S. Carrato, S. Marsi, E. Medvet, F.A. Pellegrino, G. Ramponi, M. Vittori, “Com-
puter vision for the blind: a dataset for experiments on face detection and recogni-
tion”, 39th International Convention on Information and Communication Techno-
logy, Electronics and Microelectronics (MIPRO), May 2016.

2. A.K. Jain, R.M. Bolle, S. Pankanti, (Eds.) “Biometrics: personal identification in
networked society”, Springer, 2006, ISBN 978-0-387-28539-9.

3. Florian Schroff, Dmitry Kalenichenko, James Philbin, “FaceNet: A Unified Em-
bedding for Face Recognition and Clustering”, Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition 2015.

4. Markus, N., Frljak, M., Pandzic, I.S., Ahlberg, J., Forchheimer, R., “Object de-
tection with pixel intensity comparisons organized in decision trees”. arXiv preprint
arXiv:1305.4537 (2013).

5. https://www.slant.co/topics/1629/community/best-single-board-computers
6. P. Viola and M. J. Jones, “Robust real-time face detection”, International Journal

of Computer Vision, vol. 57, no. 2, pp. 137154, 2004.
7. https://github.com/mvitez/thnets.


