Lecture Notes in Computer Science

10899

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zurich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology Madras, Chennai, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany More information about this series at http://www.springer.com/series/7409

Robert Thomson · Christopher Dancy Ayaz Hyder · Halil Bisgin (Eds.)

Social, Cultural, and Behavioral Modeling

11th International Conference, SBP-BRiMS 2018 Washington, DC, USA, July 10–13, 2018 Proceedings

Editors Robert Thomson United States Military Academy West Point, NY USA

Christopher Dancy Bucknell University Lewisburg, PA USA Ayaz Hyder The Ohio State University Columbus, OH USA

Halil Bisgin University of Michigan–Flint Flint, MI USA

 ISSN 0302-9743
 ISSN 1611-3349
 (electronic)

 Lecture Notes in Computer Science
 ISBN 978-3-319-93371-9
 ISBN 978-3-319-93372-6
 (eBook)

 https://doi.org/10.1007/978-3-319-93372-6
 ISBN 978-3-319-93372-6
 (eBook)

Library of Congress Control Number: 2018944433

LNCS Sublibrary: SL3 - Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Improving the human condition requires understanding, forecasting, and impacting sociocultural behavior both in the digital and nondigital world. Increasing amounts of digital data, embedded sensors collecting human information, rapidly changing communication media, changes in legislation concerning digital rights and privacy, spread of 4G technology to third-world countries and so on are creating a new cyber-mediated world where the very precepts of why, when, and how people interact and make decisions are being called into question. For example, Uber took a deep understanding of human behavior vis-à-vis commuting, developed software to support this behavior, ended up saving human time (and so capital) and reducing stress, and thus indirectly created the opportunity for humans with more time and less stress to evolve new behaviors. Scientific and industrial pioneers in this area are relying on both social science and computer science to help make sense of and impact this new frontier. To be successful, a true merger of social science and computer science is needed. Solutions that rely only on the social science or only on the computer science are doomed to failure. For example, Anonymous developed an approach for identifying members of terror groups such as ISIS on the Twitter social media platform using state-of-the-art computational techniques. These accounts were then suspended. This was a purely technical solution. The response was that those individuals with suspended accounts just moved to new platforms, and resurfaced on Twitter under new IDs. In this case, failure to understand basic social behavior resulted in an ineffective solution.

The goal of this conference is to build this new community of social cyber scholars by bringing together and fostering interaction between members of the scientific, corporate, government, and military communities interested in understanding, forecasting, and impacting human sociocultural behavior. It is the charge of this community to build this new science, its theories, methods, and its scientific culture in a way that does not give priority to either social science or computer science, and to embrace change as the cornerstone of the community. Despite decades of work in this area, this new scientific field is still in its infancy. To meet this charge, to move this science to the next level, this community must meet the following three challenges: deep understanding, sociocognitive reasoning, and re-usable computational technology. Fortunately, as the papers in this volume illustrate, this community is poised to answer these challenges. But what does meeting these challenges entail?

Deep understanding refers to the ability to make operational decisions and theoretical arguments on the basis of an empirical-based deep and broad understanding of the complex sociocultural phenomena of interest. Today, although more data are available digitally than ever before, we are still plagued by anecdotal-based arguments. For example, in social media, despite the wealth of information available, most analysts focus on small samples, which are typically biased and cover only a small time period, and use that to explain all events and make future predictions. The analyst finds the magic tweet or the unusual tweeter and uses that to prove their point. Tools that can help the analyst to reason using more data or less biased data are not widely used, are often more complex than the average analyst wants to use or they take more time than the analyst wants to spend to generate results. Not only are more scalable technologies needed, but so too is a better understanding of the biases in the data and ways to overcome them, and a cultural change to not accept anecdotes as evidence.

Sociocognitive reasoning refers to the ability of individuals to make sense of the world and to interact with it in terms of groups and not just individuals. Today most social-behavioral models either focus on (1) strong cognitive models of individuals engaged in tasks and so model a small number of agents with high levels of cognitive accuracy but with little if any social context, or (2) light cognitive models and strong interaction models and so model massive numbers of agents with high levels of social realisms and little cognitive realism. In both cases, as realism is increased in the other dimension the scalability of the models fail, and their predictive accuracy on one of the two dimensions remains low. By contrast, as agent models are built where the agents are not just cognitive by socially cognitive, we find that the scalability increases and the predictive accuracy increases. Not only are agent models with sociocognitive reasoning capabilities needed, but so too is a better understanding of how individuals form and use these social cognitions.

More software solutions that support behavioral representation, modeling, data collection, bias identification, analysis, and visualization support human sociocultural behavioral modeling and prediction than ever before. However, this software is generally just piling up in giant black holes on the Web. Part of the problem is the fallacy of open source; the idea that if you just make code open source others will use it. By contrast, most of the tools and methods available in Git or R are only used by the developer, if that. Reasons for lack of use include lack of documentation, lack of interfaces, lack of interoperability with other tools, difficulty of linking to data, and increased demands on the analyst's time due to a lack of tool-chain and workflow optimization. Part of the problem is the "not-invented here" syndrome. For social scientists and computer scientists alike, it is simply more fun to build a quick and dirty tool for your own use than to study and learn tools built by others. And, part of the problem is the insensitivity of people from one scientific or corporate culture to the reward and demand structures of the other cultures that impact what information can or should be shared and when. A related problem is double standards in sharing, where universities are expected to share and companies are not, but increasingly universities are relying on that intellectual property as a source of funding just like other companies. While common standards and representations would help, a cultural shift from a focus on sharing to a focus on re-use is as or more critical for moving this area to the next scientific level.

In this volume, and in all the work presented at the SBP-BRiMS 2018 conference, you will see suggestions of how to address the challenges just described. SBP-BRiMS 2018 carried on the scholarly tradition of the past conferences out of which it has emerged like a phoenix: the Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP) Conference and the Behavioral Representation in Modeling and Simulation (BRiMS) Society's conference. A total of 85 papers were submitted as regular track submissions. Of these, 18 were accepted as full papers for an acceptance rate of 21.2% and 27 were accepted as short papers for an acceptance rate of 52.9%.

Additionally, there were a large number of papers describing emergent ideas, late-breaking results. This is an international group with papers submitted with authors from many countries.

The conference has a strong multidisciplinary heritage. As the papers in this volume show, people, theories, methods, and data from a wide number of disciplines are represented including computer science, psychology, sociology, communication science, public health, bioinformatics, political science, and organizational science. Numerous types of computational methods are used that include, but not limited to, machine learning, language technology, social network analysis and visualization, agent-based simulation, and statistics.

This exciting program could not have been put together without the hard work of a number of dedicated and forward-thinking researchers serving as the Organizing Committee, listed on the following pages. Members of the Program Committee, the Scholarship Committee, publication, advertising and local arrangements chairs worked tirelessly to put together this event. They were supported by the government sponsors, the area chairs, and the reviewers. We thank them for their efforts on behalf of the community. In addition, we gratefully acknowledge the support of our sponsors – the Army Research Office (W911NF-17-1-0138), the Office of Naval Research (N00014-17-1-2461), and the National Science Foundation (IIS-1523458). Enjoy the proceedings and welcome to the community.

April 2018

Kathleen M. Carley Nitin Agarwal

Organization

Conference Co-chairs

Kathleen M. Carley	Carnegie Mellon University, USA
Nitin Agarwal	University of Arkansas - Little Rock, USA

Program Co-chairs

Halil Bisgin	University of Michigan-Flint, USA
Christopher Dancy II	Bucknell University, USA
Ayaz Hyder	The Ohio State University, USA
Robert Thomson	United States Military Academy, USA

Advisory Committee

Fahmida N. Chowdhury	National Science Foundation, USA
Rebecca Goolsby	Office of Naval Research, USA
Stephen Marcus	National Institutes of Health, USA
Paul Tandy	Defense Threat Reduction Agency, USA
Edward T. Palazzolo	Army Research Office, USA

Advisory Committee Emeritus

Patricia Mabry	Indiana University, USA
John Lavery	Army Research Office, USA
Tisha Wiley	National Institutes of Health, USA

Scholarship and Sponsorship Committee

Nitin Agarwal	University of Arkansas - Little Rock, USA
Christopher Dancy II	Bucknell University, USA

Industry Sponsorship Committee

Jiliang Tang	Michigan State University, USA
Publicity Chair	
Donald Adjeroh	West Virginia University, USA

Web Chair

Kiran Kumar Bandeli	University of Arkansas - Little Rock, USA	
Local Area Coordinatio	n	
David Broniatowski	The George Washington University, USA	
Proceedings Chair		
Robert Thomson	United States Military Academy, USA	
Agenda Chair		
Robert Thomson	United States Military Academy, USA	
Journal Special Issue Chair		
Kathleen M. Carley	Carnegie Mellon University, USA	
Tutorial Chair		
Kathleen M. Carley	Carnegie Mellon University, USA	
Graduate Program Chair		
Yu-Ru Lin	University of Pittsburgh, USA	
Challenge Problem Con	nmittee	
Kathleen M. Carley Nitin Agarwal Sumeet Kumar Brandon Oselio Justin Sampson	Carnegie Mellon University, USA University of Arkansas – Little Rock, USA Massachusetts Institute of Technology, USA University of Michigan, USA Arizona State University, USA	
BRiMS Society Chair		
Christopher Dancy II	Bucknell University, USA	
SBP Society Chair		
Shanchieh (Jay) Yang	Rochester Institute of Technology, USA	

BRiMS Steering Committee

Christopher Dancy II	Bucknell University, USA
William G. Kennedy	George Mason University, USA
David Reitter	The Pennsylvania State University, USA
Dan Cassenti	US Army Research Laboratory, USA

SBP Steering Committee

Nitin Agarwal	University of Arkansas – Little Rock, USA
Sun Ki Chai	University of Hawaii, USA
Ariel Greenberg	Johns Hopkins University/Applied Physics Laboratory, USA
Huan Liu	Arizona State University, USA
John Salerno	Exelis
Shanchieh (Jay) Yang	Rochester Institute of Technology, USA

BRiMS Executive Committee

Brad Best	Adaptive Cognitive Systems
Brad Cain	Defense Research and Development, Canada
Daniel N. Cassenti	US Army Research Laboratory, USA
Bruno Emond	National Research Council
Coty Gonzalez	Carnegie Mellon University, USA
Brian Gore	NASA
Kristen Greene	National Institute of Standards and Technology
Jeff Hansberger	US Army Research Laboratory, USA
Tiffany Jastrzembski	Air Force Research Laboratory, USA
Randolph M. Jones	SoarTech
Troy Kelly	US Army Research Laboratory, USA
William G. Kennedy	George Mason University, USA
Christian Lebiere	Carnegie Mellon University, USA
Elizabeth Mezzacappa	Defence Science and Technology Laboratory, UK
Michael Qin	Naval Submarine Medical Research Laboratory, USA
Frank E. Ritter	The Pennsylvania State University, USA
Tracy Sanders	University of Central Florida, USA
Venkat Sastry	University of Cranfield, USA
Barry Silverman	University of Pennsylvania, USA
David Stracuzzi	Sandia National Laboratories, USA
Robert Thomson	Unites States Military Academy, USA
Robert E. Wray	SoarTech

SBP Steering Committee Emeritus

Nathan D. Bos	Johns Hopkins University/Applied Physics Lab, USA
Claudio Cioffi-Revilla	George Mason University, USA
V. S. Subrahmanian	University of Maryland, USA
Dana Nau	University of Maryland, USA

SBP-BRIMS Steering Committee Emeritus

Jeffrey Johnson

University of Florida, USA

Shen-Shyang Ho

Technical Program Committee

Kalin Agrawal Shah Jamal Alam Elie Alhaijar Scott Batson Jeffrey Bolkhovsky Lashon Booker David Broniatowski Magdalena Bugajska Jose Cadena Subhadeep Chakraborty Rumi Chunara Andrew Crooks Peng Dai Hasan Davulcu Jana Diesner Wen Dong Koji Eguchi Bruno Emond William Ferng Michael Fire Ariel Greenberg Kristen Greene Kyungsik Han Walter Hill

Tuan-Anh Hoang Yuheng Hu Robert Hubal Terresa Jackson Aruna Jammalamadaka Bill Kennedy Shamanth Kumar Huan Liu Yu-Ru Lin Deryle W. Lonsdale Stephen Marcus Venkata Swamy Martha Elizabeth Mezzacappa Allen Mclean Sai Moturu Keisuke Nakao Radoslaw Nielek Kouzou Ohara Byung Won On Brandon Oselio Alexander Outkin Hemant Purohit Aryn Pyke

Weicheng Qian S. S. Ravi Travis Russell Amit Saha Samira Shaikh Naries Shoiaati David Stracuzzi Serpil Tokdemir Zhijian Wang Changzhou Wang Yafei Wang Xiaofeng Wang Changzhou Wang Rik Warren Elizabeth Whitaker Paul Whitney Kevin S. Xu Xiaoran Yan Laurence Yang Yong Yang Mo Yu Reza Zafarani Rifat Zahan Kang Zhao

Contents

Advances in Sociocultural and Behavioral Process Modeling

Multi-scale Resolution of Cognitive Architectures: A Paradigm for Simulating Minds and Society Mark G. Orr, Christian Lebiere, Andrea Stocco, Peter Pirolli, Bianica Pires, and William G. Kennedy	3
Detecting Betrayers in Online Environments Using Active Indicators Paola Rizzo, Chaima Jemmali, Alice Leung, Karen Haigh, and Magy Seif El-Nasr	16
Forecasting Gang Homicides with Multi-level Multi-task Learning Nasrin Akhter, Liang Zhao, Desmond Arias, Huzefa Rangwala, and Naren Ramakrishnan	28
Feature Selection of Post-graduation Income of College Students in the United States <i>Ewan Wright, Qiang Hao, Khaled Rasheed, and Yan Liu</i>	38
From Language to Location Using Multiple Instance Neural Networks Sneha Nagpaul and Huzefa Rangwala	46
Detecting Agreement and Disagreement in Political Debates Mahboubeh Ahmadalinezhad and Masoud Makrehchi	54
Tipping Points for Norm Change in Human Cultures Soham De, Dana S. Nau, Xinyue Pan, and Michele J. Gelfand	61
Model Co-creation from a Modeler's Perspective: Lessons Learned from the Collaboration Between Ethnographers and Modelers <i>Jose J. Padilla, Erika Frydenlund, Hege Wallewik, and Hanne Haaland</i>	70
Multi-Agent Accumulator-Based Decision-Making Model of Incivility (MADI) Jordan Richard Schoenherr and Kim Nguyen	76
Legislative Voting Dynamics in Ukraine Thomas Magelinski and Kathleen M. Carley	82
Stop Words Are Not "Nothing": German Modal Particles and Public Engagement in Social Media Fabian Rüsenberg, Andrew J. Hampton, Valerie L. Shalin, and Markus A. Feufel	89

Beaten Up on Twitter? Exploring Fake News and Satirical Responses	97
Matthew Babcock, David M. Beskow, and Kathleen M. Carley	
#metoo Through the Lens of Social Media Lydia Manikonda, Ghazaleh Beigi, Subbarao Kambhampati, and Huan Liu	104
An Agent-Based Model for False Belief Tasks: Belief Representation Systematic Approach (BRSA) Zahrieh Yousefi, Dietmar Heinke, Ian Apperly, and Peer-Olaf Siebers	111
Information, Systems, and Network Science	
Similar but Different: Exploiting Users' Congruity for Recommendation Systems <i>Ghazaleh Beigi and Huan Liu</i>	129
Mining Help Intent on Twitter During Disasters via Transfer Learning with Sparse Coding Bahman Pedrood and Hemant Purohit	141
People2Vec: Learning Latent Representations of Users Using Their Social-Media Activities Sumeet Kumar and Kathleen M. Carley	154
Finding Organizational Accounts Based on Structural and Behavioral Factors on Twitter Sultan Alzahrani, Chinmay Gore, Amin Salehi, and Hasan Davulcu	164
A Study of How Opinion Sharing Affects Emergency Evacuation Aravinda Ramakrishnan Srinivasan, Farshad Salimi Naneh Karan, and Subhadeep Chakraborty	176
Fine-Scale Prediction of People's Home Location Using Social Media Footprints Hamdi Kavak, Daniele Vernon-Bido, and Jose J. Padilla	183
Formal Organizations, Informal Networks, and Work Flow: An Agent-Based Model	190
Aspect Level Sentiment Classification with Attention-over-Attention Neural Networks Binxuan Huang, Yanglan Ou, and Kathleen M. Carley	197
Analyzing Social Bots and Their Coordination During Natural Disasters <i>Tuja Khaund, Samer Al-Khateeb, Serpil Tokdemir, and Nitin Agarwal</i>	207

Sentiment Dynamics of <i>The Chronicles of Narnia</i> and Their Ranking <i>Kaiyun Dai, Menglan Ma, and Jianbo Gao</i>	213
Sign Prediction in Signed Social Networks Using Inverse Squared Metric Mahboubeh Ahmadalinezhad and Masoud Makrehchi	220
Detecting and Characterizing Bot-Like Behavior on Twitter SiHua Qi, Lulwah AlKulaib, and David A. Broniatowski	228
Initializing Agent-Based Models with Clustering Archetypes Samaneh Saadat, Chathika Gunaratne, Nisha Baral, Gita Sukthankar, and Ivan Garibay	233
Applications for Health and Well-Being	
Predicting Alcoholism Recovery from Twitter	243
The Portrayal of Quit Emotions: Content-Sensitive Analysis of Peer Interactions in an Online Community for Smoking Cessation	253
Digilego: A Standardized Analytics-Driven Consumer-Oriented Connected	

Health Framework	263
Pain Town, an Agent-Based Model of Opioid Use Trajectories in a Small Community Georgiy Bobashev, Sam Goree, Jennifer Frank, and William Zule	274
Assessing Target Audiences of Digital Public Health Campaigns: A Computational Approach	286

Evaluating Semantic Similarity for Adverse Drug Event Narratives	292
Hameeduddin Irfan Khaja, Marie Abate, Wanhong Zheng,	
Ahmed Abbasi, and Donald Adjeroh	

Military and Intelligence Applications

Framing Shifts of the Ukraine Conflict in pro-Russian News Media 303 Sultan Alzahrani, Nyunsu Kim, Mert Ozer, Scott W. Ruston, Jason Schlachter, and Steve R. Corman

Turning Narrative Descriptions of Individual Behavior into Network Visualization and Analysis: Example of Terrorist Group Dynamics Georgiy Bobashev, Marc Sageman, Amanda Lewis Evans, John Wittenborn, and Robert F. Chew	315
Terrorist Network Monitoring with Identifying Code Arunabha Sen, Victoria Horan Goliber, Chenyang Zhou, and Kaustav Basu	329
Implicit Terrorist Networks: A Two-Mode Social Network Analysis of Terrorism in India <i>Rithvik Yarlagadda, Diane Felmlee, Dinesh Verma, and Scott Gartner</i>	340
Complex Networks for Terrorist Target Prediction	348
Cybersecurity	
Searching for Unknown Unknowns: Unsupervised Bot Detection to Defeat an Adaptive Adversary	357
Using Random String Classification to Filter and Annotate Automated Accounts	367
Understanding Cyber Attack Behaviors with Sentiment Information on Social Media	377
Social Cyber-Security	389
A Computational Model of Cyber Situational Awareness	395
Assessment of Group Dynamics During Cyber Crime Through Temporal Network Topology Nima Asadi, Aunshul Rege, and Zoran Obradovic	401
Author Index	409