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Abstract. Many data driven organisations need to integrate data from
multiple, distributed and heterogeneous resources for advanced data
analysis. A data integration system is an essential component to col-
lect data into a data warehouse or other data analytics systems. There
are various alternatives of data integration systems which are created in-
house or provided by vendors. Hence, it is necessary for an organisation
to compare and benchmark them when choosing a suitable one to meet
its requirements. Recently, the TPC-DI is proposed as the first indus-
trial benchmark for evaluating data integration systems. When using
this benchmark, we find some typical data quality problems in the TPC-
DI data source such as multi-meaning attributes and inconsistent data
schemas, which could delay or even fail the data integration process. This
paper explains processes of this benchmark and summarises typical data
quality problems identified in the TPC-DI data source. Furthermore, in
order to prevent data quality problems and proactively manage data
quality, we propose a set of practical guidelines for researchers and prac-
titioners to conduct data quality management when using the TPC-DI
benchmark.
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1 Introduction

The data warehouse, as an organization’s data repository, is a subject-oriented,
integrated, non-volatile and time-variant collection of data in support of man-
agement decisions [10]. A data warehouse may need an Extract-Transform-Load
(ETL) system to collect and integrate data. A ETL system extracts data from
data sources, enforces data quality standards, and conforms data, which gath-
ers the separate sources and finally delivers data in data warehouses with a
presentation-ready and unified format [11]. Even though a ELT system is invis-
ible to end users as a black box, it could cost 70% of the resources in the data
warehousing implementation and maintenance [11]. The process of the ETL can
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be described by data integration (DI) which extracts, transforms and populates
data into a data repository [14]. When building a data warehouse, a DI system
is the bridge for the data migration from data sources to the destination.

The TPC-DI' is designed as the first benchmark to evaluate DI systems
[14]. This benchmark provides the source and destination data models, data
transformations and implementation rules. It allows people to evaluate DI sys-
tems in order to choose a suitable one that meets their requirements. It can
also be leveraged to assess the performance of a legacy DI system for further
improvements.

Data quality problems appear frequently in the stage of DI when extracting,
migrating and populating data into data repositories. Data quality is consid-
ered an important aspect that influences the DI process [11]. Previous research
indicates that understanding the effects of data quality is critical to the suc-
cess of organisations [6]. Numerous business initiatives have been delayed or
even cancelled, citing poor-quality data as the main reason. Most initial data
quality frameworks consider that data quality dimensions are equally important
[12]. More recently, as [5] states, it is necessary to prioritise certain data quality
dimensions for data management. However, as far as we know, there is limited
research on prioritising data quality dimensions and guiding the data quality
management in the DI process. As far as we know, there is still no study that
focuses on the data quality problems aligning with the TPC-DI benchmark.

Therefore, in this paper, we intend to find out which data quality dimensions
are crucial to DI and also attempt to derive the guidelines for proactive data
quality management in DI. The contributions of this paper are shown in three
parts. The TPC-DI processes are investigated based on the data flow from dif-
ferent data sources to a data warehouse. Then we demonstrate some typical data
quality problems which should be considered in the DI process. We specify these
data quality problems and classify them into different data quality dimensions.
Finally, in order to proactively manage data quality in DI, we derive a set of data
quality guidelines that can be used to avoid data quality pitfalls and problems
when using the TPC-DI Benchmark.

The remainder of the paper is organised as follows. Section?2 reviews the
related work about data quality and DI. The processes of the TPC-DI bench-
mark is explained in Sect. 3. Section4 describes a scenario used to conduct our
research. Then we investigate the data quality problems in the DI process in
Sect.5 and classify these problems into different data quality dimensions in
Sect. 6. Section 7 proposes the guidelines for data quality management in DI.
Finally, Sect. 8 concludes the paper and outlines the future research.

2 Related Work

In order to manage data quality, Wang [22] proposes the Total Data Qual-
ity Management (TDQM) model to deliver high-quality information products.

! http://www.tpc.org/tpedi/.
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This model consists of four continuous phases: the definition, measurement, anal-
ysis and improvement. The measurement phase is critical as information quality
cannot be managed without being measured effectively and meaningfully [1]. In
order to measure data quality, data quality dimensions need to be determined. [9]
investigates the data quality management in the process of the data warehousing
aligned with a world-leading financial services company. A practically oriented
concept is illustrated in order to manage the data quality in large data ware-
house systems. It also shares experiences of developing a data quality strategy
for data quality planning and controlling.

[16] lists possible data quality issues appearing in the different stages, such as
the data source, DI and data profiling, data staging, ETL and database schema.
117 data quality problems are demonstrated. Nearly half of them (52) data
quality flaws are contributed by the data source stage, 36 issues are derived
from the stage of ETL tools, and rest occupies 29 data quality problems. Wang
and Strong [23] use an exploratory factor analysis to derive 15 important data
quality dimensions from initial 179 attributes, which are widely accepted in
the following data quality research. Based on these proposed dimensions, data
quality assessments are applied in different domains such as the Healthcare [21],
Supply Chain Management [7], and Smart City Applications [§].

[4] declares the goal of the DI system which is to decrease the effort of users in
acquiring high-quality answers. The DI system manages some procedures specifi-
cally in (1) revising or removing mistakes and missing data, (2) offering confident
documented measures in data, (3) safekeeping the captured data flow of transac-
tions, (4) calibrating and integrating multiple sources data, (5) structuring data
for end-user tools [11]. Hence, the DI system is the foundational work of the
data warehousing in order to provide synthesized, consistent and accurate data
for further analysis.

Before the TPC-DI, there are some self-defined benchmarks, such as Effi-
ciency Evaluation of Open Source ETL Tools [13] and the Data Warehouse
Engineering Benchmark (DWEB) [3]. However, there is a lack of an industrial
standardised ETL benchmark, which can be used to evaluate performances of
ETL tools [24]. The TPC-DI is the first industrial benchmark to fill this gap
regarding ETL evaluations [14]. It is released by the Transaction Processing
Performance Council (TPC) which is a non-profit corporation founded to define
transaction processing and database benchmarks.

Poess et al. [14] explain the components and characteristics of the TPC-DI,
such as the source and target data models of a data warehouse, technical details
for the generation of the data sets, the transformations of the DI workload,
etc. The TPC-DI data comes from different data sources, which need to be
integrated into a data warehouse. The data warehousing architecture and work
flow are hierarchical and divided into the SUT (system under test) and out of
SUT parts. The SUT part will be benchmarked, while the out of SUT is not
covered in the process of evaluation. This standardised benchmark provides a
standard specification for usage of the TPC-DI benchmark, in which 14 clauses
are given to explain data sources, data warehousing schema, transformations,
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description of the system under test, execution rules & metrics, pricing etc.
[18]. The code for data set generation can be downloaded and executed in JDK
environment. The data set size can be controlled by configuring the scale factor
parameter.

3 TPC-DI Processes

Since benchmarking is critical for DI evaluation [20], it is thus valuable to study
how TPC-DI benchmark works. In this section, this benchmark is investigated
from the process flow perspective.

3.1 Data Generation

DI processes of the TPC-DI benchmark usually begin from the data source
files generated by DIGen which is built on top of the Parallel Data Generation
Framework (PDGF). The capabilities of the PDGF are extended to create data
sets with the specific characteristics required for this benchmark [18]. PDGF
is implemented at the University of Passau, which is suitable for cloud scale
data generation with highly parallel and very adaptable characteristics. This
framework is configured using two XML files for data description and distribu-
tion, which facilitates the generation of different distributions of specified data
sets. The implementation expends much effort on performance and extensibility.
Hence, it is easily doable to generate new domains derived from PDGF [15]. This
framework uses a peculiar methodology for the seed to exploit the pseudo random
number generators in parallel. It keeps track of the random number sequences
for each value in the data set, which gives this framework highly scalable ability
on multi-core, multi-socket, and multi-node systems [14].

DIGen is a specific generator based on PDGF to create data sources and
audit information for this benchmark. It is required to be executed in a Java
environment and PDGF needs to be placed in the same directory [18]. There are
some regulations for usage of DIGen according to the Standard Specification of
the TPC-DI version 1.1.0 [19]: (1) The data source must be created using DIGen
for this benchmark; (2) It is not allowed to modify DIGen; (3) The version of the
specification and DIGen must match; (4) PDGF should be used; (5) Errors in a
compliant DIGen version is deemed to be in compliance with the specification;
(6) DIGen should be used to create the data source based on a minimum of
Java SE 7; (7) Test sponsors need to ensure DIGen execution correctly in their
environments; (8) The issue submission should contact the TPC administrator
with the document including the exact issue and proposed fix.

3.2 Data Sources

According to [19], the data is comprised of five sources and a small number of ref-
erence files, which come from the online transaction processing (OLTP) database,
Human Resource (HR) Database, Customer Prospect List, Financial Newswire
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Table 1. The data sets.

System/Reference File Format | Historical | Incremental

OLTP Account.txt CDC Y
Customer.txt CDC Y
Trade.txt CDC |Y Y
TradeHistory.txt CDC |Y
CashTransaction.txt | CDC |Y Y
HoldingHistory.txt |CDC |Y Y
DailyMarket.txt CDC |Y Y
Watchltem.txt CDC |Y Y

HR DB HR.csv CSv Y

Represent List Prospect.csv CSV Y Y

FINWIRE FINWIRE Multi |Y

Customer CustomerMgmt.xml | XML |Y

Management System

Reference Date.txt DEL Y
Time.txt DEL Y
Industry.txt DEL Y
StatusType.txt DEL Y
TaxRate.txt DEL Y
TradeType.txt DEL Y

and Customer Management System. The OLTP database contains data for trans-
actional information about securities market trading and the relevant entities.
The HR Database manages data for the employees and their reporting hierarchy.
The Prospect List is extracted daily from an external data provider. It includes
customers of the brokerage and potential customers’ name, contact and demo-
graphic information. The Financial Newswire contributes to the FINWIRE file
for quarterly historical data feeding of the two dimension tables and a reference
table: the DimCompany table, DimSecurity table and Financial table. The Cus-
tomer Management System manipulates new and updated customer and account
information. The reference file provides data or complementary information to
support other tables. There are 18 files from these five sources and reference
files, which are summarised and tabulated in Table 1 based on the TPC-DI stan-
dard specification [19]. After data is generated by DIGen, it will be sorted into
three different directories: the Batch 1 for the historical load; the Batch2 for the
Incremental Update 1; the Batch3 for the Incremental Update 2.

3.3 Data Warehouse

After data sources are generated, they are finally delivered into a data ware-
house. This data warehouse is based on dimensional modeling with the ability
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to efficiently reply to business questions [19]. The fact tables and dimension
tables are the fundamental components of a data warehouse. In this research,
six fact tables, seven dimension tables and five reference tables are created to
build this warehouse. Based on the document [19], the main relationships of
these tables in this data warehouse are depicted in Fig. 1. As can be seen, tables
are linked by foreign keys and most links are built between dimension tables
and fact tables. For instance, the FactWatches table has relationships with three
dimension tables (DimCustomer, DimSecurity and DimDate). However, there

DimCustomer
SK_CustomeriD DimTrade
FactCashBalances CustomeriD TradelD
SK_CustomerlD AgencylD SK_BrokerlD
SK_AccountlD SK_CreateDatelD
SK_DatelD SK_CreateTimelD
SK_CloseDatelD
SK_CloseTimelD
DimBroker DimAccount SK_SecuritylD
SK_BrokerlD SK_AccountlD SK_CompanylD
BrokerlD AccountiD SK_CustomerlD
ManageriD SK_BrokerlD SK_AccountiD
SK_CustomeriD
FactHoldings
FactWatches TradelD
SK_CustomerlD CurrentTradelD
DimSecurity
SK_SecuritylD SK_CustomerlD
SK_SecuritylD
SK_DatelD_DatePlaced SK_AccountlD
SK_CompanylD
SK_DatelD_DateRemoved SK_SecuritylD
SK_CompanylD
SK_DatelD
= SK_TimelD
FactMarketHistory DimCompany
SK_SecuritylD SK_CompanyID
SK_CompanylD CompanylD TradeType
SK_DatelD
StatusType
DimDate TaxRate
FIEETEE! SK_DatelD
AgencylD
SK_RecordDatelD
Industry
SK_UpdateDatelD
Dim Time Financial
SK_TimelD

Fig. 1. The main relationships among tables.
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are some links which appear among dimension tables, such as the link between
the DimCustomer table and DimAccount table. Reference tables support other
tables when more or detailed information is required. In addition, the DimTrade
table can be seen as a dimension table or fact table depending on its functions
in different situations.

3.4 Data Flow

The data flow in this research has several steps from the data generator to
destination. After the data is generated by DIGen, it is delivered into the data
staging area. This process is just the migration of data sources from outside to
system under test (SUT) and no data transformations and cleansing operations
are executed. After data is sent to the staging area, data quality issues should
be solved before loading into the data warehouse. The data flow is depicted in
Fig. 2. The data flow before the staging area is out of the testing scope, the rest
of data flow is under the test for evaluations.

| Out of Scope | System Under Test (SUT) |

Account. txt
Customer. txt
Trade. txt
TradeHistory. txt
CashTransaction. txt
HoldingHistory. txt
DailyMarket. txt
WatchItem. txt

Staging
Area

Data
Warehouse

DIGen Transforms

FINWIRE

CustomerMgmt. xml

Fig. 2. The data flow.

4 Scenario

In order to investigate the data quality in DI aligned with the TPC-DI, a typical
scenario is set up to frame our research. In practice, it is common to extract
data firstly into flat files rather than transport data from data resources to a
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data warehouse directly. It is sometimes necessary to obtain or purchase external
data from outside free data sources or third-party companies. In this case, a retail
brokerage data warehouse is built and fed by using the TPC-DI data. During
this process, some data quality problems appear in the process of DI, which are
explained concretely in the following sections.

In our scenario, some tables are emphasised herein, since they are involved
as the data quality issue examples. The DimCustomer dimension table stores
customer records and DimAccount dimension table archives customers’ account
details. A new customer must accompany a new account, but existing customers
can open more than one account. When analysing the key customers or trades
via accounts, we need to obtain the records from DimTrade table, and join cor-
responding entities from DimCustomer and DimAccount tables. The DimCom-
pany table contains companies’ ID, name, CEQO, address etc. The DimSecurity
table incorporates securities issued by companies. The Financial table gathers all
companies’ financial data. All data for these three tables is fed by the FINWIRE
files. When reviewing the market history or rating the companies from a finance
perspective, the MarketHistory table would be retrieved, and the DimCompany,
DimSecurity and Financial tables would be looked up to acquire information if
necessary.

5 Data Quality Problems in Data Integration

In this section, we describe and define the data quality problems in the TPC-
DI data sets when conducting this scenario. Some typical examples are given
to describe these problems. Afterwards, we classify these problems into differ-
ent data quality dimensions. Thus, we are able to identify which data quality
dimensions are important for data quality management in DI aligned with the
TPC-DI.

5.1 Missing Values

There are mainly two types of missing value problems in the DI processes. On
one hand, the data in one field appears to be null or empty. We define this type
of missing values as direct incompleteness, which means this can be directly
detected by rule-based queries. On the other hand, the data can be missing
because of the data operations such as data update. We define this type of
missing values as indirect incompleteness. We describe the two types of missing
values in details as follows.

The Missing Values in Fields. The Missing Values in fields indicate there is
no non-null requirement or no compulsory values in some specific fields. In our
scenario, the DimCompany table’s data is obtained from FINWIRE files, some
values are missing in the field of the FoundingDate which show the creation time
of companies.
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Even this field can be empty in the DimCompany table, but these missing
values would influence the further data mining or data analysis (e.g. the company
reputation assessment). The DimCompany table has a field named Sparting for
standard & poor company’s rating which would be influenced by values of the
FoundingDate. So in this situation, if the missing values of the FoundingDate
could be given or found, they might be leveraged to re-rate the value in the
Sparting field.

The Updating Record with Missing Values. When updating some records,
only new values are given to revise the old values, while other fields are missing
because they are unnecessary to be updated. As a typical characteristic of the
data warehouse, the update is not directly changing the old values of a record,
instead, the data warehouse maintains and marks the old record as a legacy or
inactive record and create a new record with a surrogate key for updating.

The records for updating may be nonuniform in the DimCustomer table. For
example, some records only have new addresses, while some records only have
emails, because they only need to update addresses or emails. A generalised
example of these records is described in Table 2. Based on the characteristic of
the data warehouse, when updating a record, a new record will be created and
the legacy record will still be maintained rather than be deleted.

Table 2. The updating records with missing values.

Customer ID | Address | Email | Action type
56 XXX X@X.X | New

56 YYY NULL | Update

56 NULL | Z@Z.Z |Update

Updating these records could not be inserted into the dimension tables
directly. Otherwise, errors may be thrown by a database system, because of
inserting null or empty values into non-null-allowed fields.

5.2 The Conflict of Entities

In this paper, the definition of an entity is a record or object stored in a table.
The reason why we differentiate the entity and record is that a record may
contain several entities outside tables, while sometimes a record is an entity.
The conflicts of entities mean that there is more than one valid or active record
with the same identifier in a table. The records in tables need to agree with each
other and avoid conflicts between them.

In our scenario, when inserting a record into the DimSecurity table, a lookup
need to be conducted to check whether an ID already exists. If it is existed, the
IsCurrent field of the old record should be modified to false or inactive firstly, and
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then the new record is inserted into the table. However, in order to speed up the
process, caches and several threads may be leveraged for creating and updating
operations in parallel. If operations of creating and updating a certain entity are
allocated in different caches or threads, the updating could be executed before
the creating. The lookup would return the “not exist” ID for updating. This
may result in more than one record’s IsCurrent shows active or true. But only a
record should be active or true for an ID.

The situation above appears in our experiment when using big caches and
several threads to load data. Some records would be active or true all the time
even they have already been updated. If this issue is ignored or resolved improp-
erly, some entities may have the same ID and active status but different surrogate
keys. Conflicts occur when querying these entities with IDs.

5.3 Format Incompatibility

This issue appears frequently in the date format. Date format conflicts are mainly
triggered by inconsistent date styles between the data resource and data ware-
house.

In our scenario, the field of EffectiveDate means the effective date of a certain
record. The date retrieved from the data source is the string with the format
“YYYY-MM-DDTHH24:MI:SS” which includes the date and time split by the
capital T. If the data warehouse is built in the Oracle database system as an
example, the date format is “DD-Mon-YY HH.MI.SS.000000000 AM/PM” which
shows different date and time formats compared with the format in the data
source. Two formats of an EffectiveDate example in the data source and the
Oracle data warehouse are given in Table 3.

Table 3. Examples of format incompatibility.

Date format Place
2007-05-08T07:21:56 The date format in the data resource
07-MAY-08 07.21.56.000000000 AM | The date format in the data warehouse

If the original data with the different date format in the data source is inserted
into the data warehouse without format transformations, an error would be
thrown as the format violation. Therefore, the original date values need to be
reformatted to match the date format in the data warehouse.

5.4 Multi-resource or Mixed Records

In raw data sources, a record may contain more than one table’s entities. These
entities in a record normally have referential or dependent relationships. For
example, in the CustomerMgmt.xml, a record may contain two dimension tables’
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entities (DimCustomer and DimAccount tables). An account must belong to a
certain customer and a customer could have more than one account (One-to-
Many Relationship). For each record, there is a field named a Action Type, which
shows the purpose of this record. When we insert a record to create or update
a new account, the value of the Action Type is “New” or “UPDACCT” respec-
tively. This record includes two entities which contain customer and account’s
information. Whereas, when we only update the customer information, the value
of Action Type is “UPDCUST”. In this case, the record only contains one entity.
The Table4 illustrates these three kinds of records.

Table 4. Examples of mixed records.

Customer ID | Account ID | Action type | Other customer info. | Other account info.
137 165 New

137 Null UPDCUST Null

137 165 UPDACCT Null

As such, when carrying out the data operations, there are two options: (1)
differentiating the entities then identifying the purpose; (2) identifying the pur-
poses then differentiating the entities if necessary. We find that the option 1 is
slower compared to the option 2, since some records do not need to be differen-
tiated, but all purposes of records need to be identified.

5.5 Multi-table Files

In raw data sources, some files contain more than one table’s records. This
situation may happen when records in tables are collected from the one system.
In the TPC-DI data sets, a file may contain three tables’ data: CMP, SEC and
FIN. The CMP records are related to the DimCompany table; the SEC is for
the DimSecurty table; the FIN feeds the Financial table. Table5 gives three
examples of these types.

Table 5. Examples in multi-table files.

Posting date and time | Record type | Status | Other information
19860502-082315 FIN NULL | Other financial information
19760713-103826 SEC ACTYV | Other Security information
19850826-113217 CMP ACTYV | Other Company Information

Based on types of records, the data extracted from this data source file can be
divided into several branches. Each branch may have sub-branches for different
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purposes as they can be further split into different sub-branches (e.g. ACTV and
INAC). Then there are several branches and sub-branches need to be considered
in the process of loading data. If dependencies and links exist among these tables,
the sequence of loading the data into tables needs to be prioritised as some tables
may depend on other tables via foreign keys. If ignoring this sequence, errors
would be triggered as the foreign keys are not found.

5.6 Multi-meaning Attributes

In data sources, an attribute or a field may allow containing different types of
data which could have different meanings. It could be difficult to avoid ambigu-
ities with improper differentiation.

In our scenario, a attribute named the CoNameOrCIK that may carry the
company identification code (10 chars) or company name (60 chars). The Table 6
shows two records as examples from data sources. The first row uses a company
identification code, while the second row uses a company name which may be
encrypted. In the Financial table, there is an attribute called SK_CompanyID
which is the primary key of the DimCompany table as well as the foreign key
of the Financial table. Thus, when inserting a record into the Financial table,
we could either use the company identification code or company name to look
up the DimCompany table to find the primary key and then insert it into the
Financial table as a foreign key.

Table 6. Examples of multi-meaning attributes.

Posting date and time | Record type | CoNameOrCIK

19790911-082315 FIN 18362001000000123456

19830512-091241 FIN 501026396 HBGSKDFbFe
bKiJHFLSJIEFgRjmgXd
AQcnYFGETDHzRouxMx
JHURQIjtVZu

If the company identification code and company name are very similar and
hard to be identified, the program could not differentiate the meaning and type
of a value. Errors could occur when loading these misunderstood or incorrect
values into tables.

6 Classify Data Quality Problems

In order to facilitate the data quality management in DI, we classify these data
quality problems into the classic data quality dimensions proposed by Wang
and Strong [23]. The last two data quality problems are not totally fitted into
proposed data quality dimensions and we propose new dimensions for the data
quality problems, which are marked with *. The details is tabulated in Table 7.
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Table 7. Data quality dimensions in data integration [25].

Data quality dimension | Data quality problem

Completeness Missing value
Timeliness Conflict of entities
Consistency Format incompatibility

Operational Sequence* | Multi-Resource or Mixed records
Multi-Table files

Uniqueness™* Multi-Meaning attributes

In the context of DI, not all data quality dimensions are equally important for
data quality management in ID. We propose initially focusing on the dimensions
of completeness, timeliness and consistency. This small set of dimensions not
only point out the key focus of data quality management in DI but also provide
a foundation for data cleansing in DI.

Moreover, some data quality dimensions need to be further refined. For exam-
ple, representational consistency in DI is not enough. We need to align the defi-
nitions of the data rather than only align the names. Therefore the consistency
can be further refined into syntactic, pragmatic and semantic levels.

Accuracy is always considered as one of the most important data quality
dimensions in data quality management. However, in DI, it is usually lack of the
ground truth for the data. Therefore, wrong value is not included in our data
quality problems. As an initial step in data quality management, we recommend
focusing on the tangible set of data quality dimensions.

Not all the data quality problems can be classified into classic data quality
dimensions, especially the problems about the sequence of the data operations. A
correct sequence of data operation can increase the process efficiency and avoid
data quality errors. For example, we can identify different types of operations or
use table dependencies to define the sequence of loading the data.

Furthermore, as Dakrory et al. [2] state that uniqueness is one of the impor-
tant data quality dimensions in DI. We find that apart from the classic data
quality dimensions, data uniqueness is a critical indicator to differ the data
meaning in order to avoid possible data ambiguities.

7 Guidelines for Data Quality Management

In order to prevent these data quality problems in DI and proactively manage
data quality, we propose the following guidelines to help researchers and prac-
titioners to avoid data quality pitfalls and guide effective data quality manage-
ment. Specifically, guideline 1 and 2 tackle the missing value problems; Guideline
3 can be used to prevent entity conflicts; Guideline 4 deals with format incom-
patibility; Guideline 5 is for optimising mixed records and multi-table files in
DI and Guideline 6 intends to solve the problem of multi-meaning attributes.



70 Q. Yang et al.

To summarise the typical data quality problems in DI and the corresponding
proactive actions, Table 8 is provided as an overview.

7.1 Guideline 1

In order to manage the possible effects of missing values, we can use business
logic to derive the field dependency, then pay attention especially to the fields
that are involved in the field dependency and meanwhile allow null or empty
values.

There are certain fields that allow null or empty values in the data warehouse.
Those fields may not cause errors in DI processes. But when these fields are
used in the data analytics or some business operations, they may play as an
independent variable and can be used to determine other fields or values. The
Missing values would then cause a problem.

7.2 Guideline 2

In the data quality management for DI, the dimension of completeness should
be further refined, since there can be direct incompleteness such as the missing
value in a record or indirect incompleteness such as the missing value in the
update process.

Completeness is one of the well-known dimensions in data quality manage-
ment. Managing data completeness is especially important during DI, since it is
usually a straightforward problem which can be foreseen, whereas in the mean-
time there might be certain incompleteness pitfalls that people will overlook. As
the example given in the Sect. 5.1, when carrying out the update operation, the
updated records can turn out to be incomplete without a lookup. Therefore, to
deal with the indirect incompleteness caused by the update, it is necessary to
look up and find the values that do not need to be updated.

7.3 Guideline 3

When both types of inserting and updating records appear in batch operations,
the sequence of data operations in a batch can avoid entity conflicts.

Batch operations are typically used to speed up the data creation, read,
update and deletion (CRUD) operations. In practice, distributed operations are
also usually conducted in parallel to expedite the processing of data. Thus, for an
entity, it is necessary to avoid update or deletion before the insert operation. One
of the best practices is to separate the CRUD operations into different batches
and rank them. Parallel operations could be conducted inside a separated batch.

7.4 Guideline 4

For DI, assuring format consistency in the syntactic (representational) level is not
enough. Data format consistency between the data source and data warehouse
should be aligned at a pragmatic level.
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Table 8. The summary of guidelines [25].

Data quality problems | Guidelines Proposed proactive actions for
data integration

Missing values Guidelinel Guideline 2 | Field dependencies and indirect
incompleteness caused by data
operations should be specified

Conflict of entities Guideline 3 The sequence of data operations
in the batch needs to be
properly designed to avoid
entity conflicts

Format incompatibility | Guideline 4 Representational and pragmatic
consistency should be both
examined before ETL

Multi-Resource or Guideline 5 The sequence of data operations
Mixed records can be optimised by firstly
Multi-Table files extracting the types of data

operations and then
differentiating the entities

Multi-Meaning Guideline 6 Data uniqueness should be
attributes included in the data quality
management in data integration

Data format consistency cannot be confirmed only by the format name. With
the same data format name (syntactic level), there might be different real usages
or different definitions (pragmatic level). One of the prevalent format inconsisten-
cies is the date format unconformity. Thus before carrying out DI, practitioners
should especially look into what certain format means and whether the defini-
tions of the format are aligned between the data source and data warehouse.

7.5 Guideline 5

Optimising the sequence of data operations can increase the efficiency of DI
processes and avoid data quality problems.

In DI processes, data entities may be mixed together in a record. We rec-
ommend firstly to identify the purpose of this record, then separate the data
entities if necessary. Moreover, when we load a data source with various tables,
optimising the loading sequence can avoid the errors triggered by table depen-
dencies.

7.6 Guideline 6

Data uniqueness is an important dimension in data quality management. Com-
plete logic should be used to identify the data. In DI, regular expressions could
be used to identify certain types of data. However, they are not always enough
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to differentiate the data. For example, when different letters or letter combi-
nations have different meanings, it could be difficult for regular expressions to
identify the meanings. Therefore, we recommend deriving a set of comprehensive
conditional logic that can be used to categorise their semantics.

8 Conclusion

This paper investigates processes of DI allied with the TPC-DI benchmark.
There is a set of typical data quality problems that may occur in the DI pro-
cesses when using the TPC-DI. We define these problems and provide examples
to demonstrate problem triggers and possible effects. These problems are fur-
ther classified based on traditional data quality dimensions, which can be used to
indicate that what data quality dimensions are important in DI. These dimen-
sions can help researchers and practitioners to set the focus on data quality
management, and reduce the cost and time to identify data quality dimensions.
In addition, we propose a set of guidelines that can be used to avoid data quality
problems when using the TPC-DI benchmark.

In the future, we will conduct experiments to examine which data quality
dimensions can be improved and how to coordinate the trade-offs between the
data quality dimensions. The different DI scenarios should be taken into account
for further verifying the utility of the guidelines. In addition, as data is exploding
and many organisations are building data warehouses in the context of Big Data,
we will investigate DI and data quality problems allied with the TPC-DI in Big
Data.
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