Skip to main content

A Novel Haptic Glove (ExoTen-Glove) Based on Twisted String Actuation (TSA) System for Virtual Reality

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10894))

Abstract

A compact and light-weight wearable haptic glove (ExoTen-Glove) based on Twisted String Actuation (TSA) system is presented in this paper. The proposed system uses two actuators with small size DC motors and an integrated force sensor based on optoelectronic components. ExoTen-Glove can provide force feedback to the thumb on one side, and to the other fingers grouped together on the other side. This configuration has been selected to provide the user force feedback during the execution of grasping tasks by means of a virtual reality environment to feel the stiffness of different objects. Thus for the first evaluation of the ExoTen-Glove, we only focus on the feedback from thumb and index finger. The paper reports the design of the haptic glove, the description of the actuation system, the embedded controller, and the preliminary experimental evaluation of the device. The ExoTen-Glove has been evaluated by means of a simple experiment in virtual environment with 2-DOF grasping activities of rigid and compliant virtual object (spring) using thumb and index finger to show the applicability of the system for rehabilitation and haptic feedback purposes. Results of the experiments showed that the haptic ExoTen-Glove improved stiffness evaluation significantly for the high and low spring stiffness and users were able to distinguish virtual spring stiffness differences easily with high accuracy.

Robotics Research Group—The Robotics Research Group is a university core lab of Flanders Make.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ivanisevic, I., Lumelsky, V.J.: Configuration space as a means for augmenting human performance in teleoperation tasks. Trans. Syst. Man Cyber. Part B 30(3), 471–484 (2000)

    Article  Google Scholar 

  2. Dubey, R.V., Everett, S.E., Pernalete, N., Manocha, K.A.: Teleoperation assistance through variable velocity mapping. IEEE Trans. Robot. Autom. 17(5), 761–766 (2001)

    Article  Google Scholar 

  3. Bardorfer, A., Munih, M., Zupan, A., Primozic, A.: Upper limb motion analysis using haptic interface. IEEE/ASME Trans. Mechatron. 6(3), 253–260 (2001)

    Article  Google Scholar 

  4. Basdogan, C., Ho, C.H., Srinivasan, M.A.: Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans. Mechatron. 6(3), 269–285 (2001)

    Article  Google Scholar 

  5. Guthold, M., Falvo, M.R., Matthews, W.G., Paulson, S., Washburn, S., Erie, D.A., Superfine, R., Brooks, F.P., Taylor, R.M.: Controlled manipulation of molecular samples with the nanomanipulator. IEEE/ASME Trans. Mechatron. 5(2), 189–198 (2000)

    Article  Google Scholar 

  6. Marlière, S., Urma, D., Florens, J.-L., Marchi, F.: Multi-sensorial interaction with a nano-scale phenomenon: the force curve. In: Proceedings of EuroHaptics, pp. 246–253 (2004)

    Google Scholar 

  7. Kawasaki, H., Doi, Y., Koide, S., Endo, T., Mouri, T.: Hand haptic interface incorporating 1D finger pad and 3D fingertip force display devices. In: Proceedings of International Symposium on Industrial Electronics, pp. 1869–1874 (2010)

    Google Scholar 

  8. Kawasaki, H., Mouri, T.: Design and control of five-fingered haptic interface opposite to human hand. IEEE Trans. Robot. 23(5), 909–918 (2007)

    Article  Google Scholar 

  9. Avizzano, C.A., Bargagli, F., Frisoli, A., Bergamasco, M.: The hand force feedback: analysis and control of a haptic device for the human-hand. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 989–994 (2000)

    Google Scholar 

  10. Achibet, M., Casiez, G., Marchal., M.: DesktopGlove: a multi-finger force feedback interface separating degrees of freedom between hands. In: IEEE Computer Society (ed.) 3DUI 2016, The 11th Symposium on 3D User Interfaces, Proceedings of the Symposium on 3D User Interfaces, Greenville, United States, p. 10 (2016)

    Google Scholar 

  11. Tejeiro, C., Stepp, C.E., Malhotra, M., Rombokas, E., Matsuoka, Y.: Comparison of remote pressure and vibrotactile feedback for prosthetic hand control. In: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 521–525 (2012)

    Google Scholar 

  12. Tabot, G.A., Dammann, J.F., Berg, J.A., Tenore, F.V., Boback, J.L., Vogelstein, R.J., Bensmaia, S.J.: Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl. Acad. Sci. 110(45), 18279–18284 (2013)

    Article  Google Scholar 

  13. Montaño-Murillo, R., Posada-Gómez, R., Martínez-Sibaja, A., Gonzalez-Sanchez, B.E., Aguilar-Lasserre, A.A., Cornelio-Martńez, P.: Design and assessment of a remote vibrotactile biofeedback system for neuromotor rehabilitation using active markers. Procedia Technol. 7, 96–102 (2013)

    Article  Google Scholar 

  14. Olsson, P., Johansson, S., Nysjö, F., Carlbom, I.: Rendering stiffness with a prototype haptic glove actuated by an integrated piezoelectric motor. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 361–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_33

    Chapter  Google Scholar 

  15. CyberGrasp. http://www.cyberglovesystems.com. Accessed 3 Apr 2018

  16. Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The rutgers master ii-new design force-feedback glove. IEEE/ASME Trans. Mechatron. 7(2), 256–263 (2002)

    Article  Google Scholar 

  17. Palli, G., Natale, C., May, C., Melchiorri, C., Würtz, T.: Modeling and control of the twisted string actuation system. IEEE/ASME Trans. Mechatron. 18(2), 664–673 (2013)

    Article  Google Scholar 

  18. Moshe, S.: Twisting wire actuator. J. Mech. Des. 127(3), 441–445 (2004)

    Google Scholar 

  19. Würtz, T., May, C., Holz, B., Natale, C., Palli, G., Melchiorri, C.: The twisted string actuation system: modeling and control. In: 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1215–1220. IEEE (2010)

    Google Scholar 

  20. Palli, G., Melchiorri, C., Vassura, G., Scarcia, U., Moriello, L., Berselli, G., Cavallo, A., De Maria, G., Natale, C., Pirozzi, S., May, C., Ficuciello, F., Siciliano, B.: The DEXMART hand: mechatronic design and experimental evaluation of synergy-based control for human-like grasping. Int. J. Robot. Res. 33(5), 799–824 (2014)

    Article  Google Scholar 

  21. Pepe, A., Hosseini, M., Scarcia, U., Palli, G., Melchiorri, C.: Development of an haptic interface based on twisted string actuators. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 28–33. IEEE (2017)

    Google Scholar 

  22. Hosseini, M., Palli, G., Melchiorri, C.: Design and implementation of a simple and low-cost optoelectronic force sensor for robotic applications. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1011–1016. IEEE (2016)

    Google Scholar 

  23. Hosseini, M., Meattini, R., Palli, G., Melchiorri, C.: A wearable robotic device based on twisted string actuation for rehabilitation and assistive applications. J. Robot. 2017, 11 (2017)

    Google Scholar 

  24. Palli, G., Hosseini, M., Melchiorri, C.: A simple and easy-to-build optoelectronics force sensor based on light fork: design comparison and experimental evaluation. Sens. Actuators A Phys. 269, 369–381 (2018)

    Article  Google Scholar 

  25. Netta, G., Okamura, A.M., Kuchenbecker, K.J.: Perception of force and stiffness in the presence of low-frequency haptic noise. PloS one 12(6), e0178605 (2017)

    Article  Google Scholar 

  26. Blake, J., Gurocak, H.B.: Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatron. 14(5), 606–615 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

The support from VLAIO/Flanders Make Project FINROP_ICON is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohssen Hosseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosseini, M., Pane, Y., Sengül, A., De Schutter, J., Bruyninckx, H. (2018). A Novel Haptic Glove (ExoTen-Glove) Based on Twisted String Actuation (TSA) System for Virtual Reality. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics