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Abstract. A novel numerical scheme including time and spatial discretization is 

offered for coupled Cahn-Hilliard and Navier-Stokes governing equation sys-

tem in this paper. Variable densities and viscosities are considered in the nu-

merical scheme. By introducing an intermediate velocity in both Cahn-Hilliard 

equation and momentum equation, the scheme can keep discrete energy law. A 

decouple approach based on pressure stabilization is implemented to solve the 

Navier-Stokes part, while the stabilization or convex splitting method is adopt-

ed for the Cahn-Hilliard part. This novel scheme is totally decoupled, linear, 

unconditionally energy stable for incompressible two-phase flow diffuse inter-

face model. Numerical results demonstrate the validation, accuracy, robustness 

and discrete energy law of the proposed scheme in this paper. 

Keywords: Energy stable, Diffuse interface, Two-phase flow. 

1 Introduction 

Two-phase flow is omnipresent in many natural and industrial processes, especially for the 

petroleum industry, the two-phase flow is throughout the whole upstream production process 

including oil and gas recovery, transportation and refinery, e.g.[1].  

As a critical component in the two-phase fluid system, the interface is usually considered 

as a free surface, its dynamics is determined by the usual Young-Laplace junction condition in 

classical interface tracking or reconstruction approaches, such as Level-set[2], volume-of-

fluid[3] and even some advanced composite method like VOSET[4].  

But when it traced back to 19th century, Van der Waals[5] provided a new alternative 

point of view that the interface has a diffuse feature, namely non-zero thickness. It can be im-

plicitly characterized by scalar field, namely phase filed, taking constant values in the bulk 

phase areas and varying continuously but radically across a diffuse front. Within this thin tran-
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sition domain, the fluids are mixed and store certain quantities of "mixing energy" in this re-

gion. Thus, unlike other methods proposed graphically, phase dynamics is derived from inter-

face physics by energy variational approach regardless of the numerical solution, which gives 

rise to coupled nonlinearly well-posed system at partial differential equation continuous form 

that satisfies thermodynamically consistent energy dissipation laws. Then there is possibility 

for us to design numerical scheme preserving energy law in discrete form[6].  

The diffuse interface approach excels in some respects of handling two-phase flow 

among other available methods. Firstly, it is based on the principle of energy minimization. 

Hence it can deal with moving contact lines problems and morphological changes of interface 

in a natural way effortlessly with GNBC[7], such as droplet coalescence or break-up phenome-

na. Secondly, we can benefit from the simplicity of formulation, ease of numerical implementa-

tion without explicitly tracking or reconstructing interface, also the capability to explore essen-

tial physics at the interfacial domain. The accessibility of modeling various material properties 

or complex interface behaviors directly by introducing appropriate energy functions. Therefore, 

enforcing certain rheological fluid or modeling polymeric solutions or viscoelastic behaviors 

would be alluring feature naturally. For these benefits, the diffuse interface model attracted 

substantial academic attention in recent years, a great number of the advanced and cutting-edge 

researches are conducted corresponding to partial immiscible multi-components flow or flow 

with surfactant based on phase field theory[8,9] and thermodynamically consistent diffuse 

interface model for two-phase flow with thermo-capillary[10] et al.  

 The classical diffuse interface model for cases of two-phase incompressible viscous 

Newtonian fluids is known as the model H[11]. It has been successfully applied to simulate 

flows involving incompressible fluids with same densities for both phase components. This 

model is restricted to the matched density case using Boussinesq approximation. Unlike the 

matched density case, when it comes to the case with big density ratio, the incompressibility 

cannot gurantee mass conservation any longer in this model. Therefore, the corresponding 

diffuse interface model with the divergence free condition no longer preserve an energy law. 

Thus, a lot of further works have been done by (1998)Lowengrub[12], (2002)Boye[13], 

(2007)Ding[14], (2010)Shen [15] and most recently Benchmark computations were carried out 

by (2012)Aland[16]. 

Generally there are two kinds of approaches to deal with variable densities problem, one 

is that material derivative of momentum equation written in one kind form that takes density 

variations into consideration without resorting to mass conservation to guarantee stability of 

energy proposed by J.-L. Guermond [17]. Another approach is proposed by Abels[18]. The 

approach introduces an intermediate velocity to decouple the Cahn-Hilliard equation and Na-

vier-Stokes equation system in Minjeaud’s paper[19], and recently this approach is applied in 

Shen[20] to simulate the model in [18]. However, the schemes proposed in [19,20] employ the 

intermediate velocity in the Cahn-Hilliard equation only, imposing the mass balance equation 

to ensure the discrete energy-dissipation law. Very recently, in Kou[21] the schemes that the 

intermediate velocity is applied in both mass balance equations and the momentum balance 

equation are developed to simulate the multi-component diffuse-interface model proposed in 

[22] to guarantee the consistency between the mass balance and energy dissipation. In this 

paper, we extend this treatment to the model in [18]. However, this extension is not trivial due 

to a crucial problem that Cahn-Hilliard equation is not equivalent to mass balance equation. In 
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order to deal with this problem, a novel scheme applying the intermediate velocity in Navier-

Stokes equation will be proposed in this paper. 

The rest part of this paper is organized as follows. In Section 2 we introduce a diffuse in-

terface model for two-phase flow with variable densities and viscosities in detail; In Section 3 

we propose a brand new numerical scheme for solving the coupled Navier–Stokes and Cahn–

Hilliard equation system based on this model; In Section 4 some numerical results are demon-

strated in this part to validate this scheme comparing with benchmark and to exam the accura-

cy, discrete energy decaying tendency. Other cases and numerical performances will be investi-

gated to show the robustness of the novel scheme. 

2 Mathematical formulation and physical model 

The phase field diffuse interface model with variable densities and viscosities can be described 

through the following Cahn-Hilliard equation coupled with Navier-Stokes equation. An intro-

duced phase field variable   , namely order parameter, defined over the domain, identifies the 

regions occupied by the two fluids. 

  (   )  {
                 
              

                                               (1) 

With a thin smooth transition front of thickness   bridging two fluids, the microscopic in-

teractions between two kinds of fluid molecules rules equilibrium profiles and configurations of 

interface mixing layer neighboring level-set    *  (   )   +. For the situation of iso-

tropic interactions, the following Ginzburg–Landau type of Helmholtz free energy functional is 

given by the classical self-consistent mean field theory in statistical physics[23]: 

      (    )   ∫ (
 

 
‖  ‖   ( ))  

 
 (2)    

The foremost term in right hand side represents the effect of mixing of interactions between the 

materials, and the latter one implies the trend of separation. Set the Ginzburg–Landau potential 

in the usual double-well form  ( )  
    

   
.   means mixing energy density,   is the capillary 

width of interface between two phases. If we focus on one-dimensional interface and assume 

that total diffusive mixing energy in this domain equals to traditional surface tension coeffi-

cient: 

           ∫ {
 

 
(
  

  
)
 

  ( )}   
  

  
 (3) 

The precondition that diffuse interface is at equilibrium is valid, then we can get the relation-

ship among surface tension coefficient , capillary width   and mixing energy density  : 

  
( √ ) 

 

 

 
                                                    (4) 

The evolution of phase field ( )  is governed by the following Cahn-Hilliard equations: 
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  {
     (  )     

  
  

  
  ( )    

                                                (5) 

Where   represents the chemical potential, namely  
  

  
 that indicates the variation of the 

energy   with respect to  ; the parameter   is a mobility constant related to the diffusivi-

ty of bulk phases and  ( )    ( ) 

The momentum equation for the two-phase system is presented as the usual form 

 {

 (   (   ) )     

    ( )       

     (     )
 (6) 

with the identical equation 

  (     )  (    ( ))  
 

 
 (‖  ‖   ( ))       

 
 

 
 (‖  ‖   ( ))      

 

 
 (‖  ‖   ( )    ) (7) 

The second term in eqn.(7) can be merged with the pressure gradient term   , then the pressure 

of the momentum equation should be a modified pressure   , It denotes that:      
 

 
 (|  |   ( )    ).  The     is represented the modified one in the following contents for 

unity. 

2.1 Case of matched density 

The governing equations system: 

{

     (  )     

   ( )    

   (   )      ( )        
   

                                  (8) 

A set of appropriate boundary condition and initial condition is applied to the above system: 

no-slip boundary condition for momentum equation and the period boundary condition for the 

Cahn-Hilliard equation. 

 |        
  

  
|
  

      
  

  
|
  

                                     (9) 

Also the initial condition: 

 |           |                                              (10) 

If the density contrast of two phases is relatively little, a common approach is to employ the 

Boussinesq approximation[24], replacing momentum equation in equation system(8) by  

   (   (   ) )      ( )         
   

 
    (11) 
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Set the background density    (     ) and term 
   

 
    is an additional body force term 

in charge of the equivalent gravitational effect caused by density difference. Since the density 

   distributed everywhere in this field do not change respect to time. If the divergence of the 

velocity field    =0 holds. Then basic mass conservation      (  )=0 is a natural conse-

quence of incompressibility. 

By inner product operation of 1st 2nd and 3rd equation of system (8) with   ,   ,   re-

spectively and summation of these three results, It is easily to conclude that system (8) admits 

the following energy dissipation law: 

 

  
∫ (

 

 
‖ ‖  

 

 
‖  ‖    ( ))   

 
 ∫ (

 

 
‖ ( )‖   ‖  ‖ )   

 
        (12) 

2.2 Case of variable density 

Now we consider the case where the density ratio is so large that the Boussinesq approx-

imation is no longer in effect. Here introduced a phase field diffuse interface model for incom-

pressible two-phase flow with different densities and viscosity proposed by Abels[18]. 

       {

     (  )     

   ( )    

    (    )         ( )        
     

 (13) 

among them 

  
     

 
                               (14) 

The density and viscosity is the function of phase parameter. 

 ( )  
     

 
  

     

 
    ( )  

     

 
  

      

 
                (15) 

The mass conservation property can be derived from eqn. (14),(15) and (16). 

     (  )                                             (16) 

The NSCH governing system holds thermodynamically consistency and energy 

law. We can obtain the following energy dissipation law: 

 

  
∫ (

 

 
‖ ‖  

 

 
‖  ‖    ( ))    

 
 ∫ (

 

 
‖ ( )‖   ‖  ‖ )   

 
      (17) 

If we add the gravity in this domain, such as modeling topological evolution of a sin-

gle bubble rising in a liquid column, the total energy must contain the potential ener-

gy. Then this energy dissipation law can be expressed as follow: 

     

  
 

 

  
∫ (

 

 
‖ ‖  

 

 
‖  ‖    ( )     )     

 
             (18) 
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3 Decoupled Numerical scheme 

3.1 Time discretization 

In matched density case, for simplicity of presentation, we will assume that    
    . Given initial conditions  ,   ,    we compute    ,    ,     ,  ̃    ,      

for    . Here is an additional term to the convective velocity introduced based on 

the idea from [19].Then the intermediate velocity term  ̂       
       

  
 makes 

the Cahn-Hilliard equation and the Navier-Stokes equation decoupled fundamentally. 

The novel scheme can be described as below: 

{
 
 

 
 

       

  
   ( ̂     )        

      (  ( 
 )    ( 

   )       )       

       ( (  )       )  
 

   (       ) 

       |                |    

                  (19) 

We add a stabilizing term 
 

   (       ) or treat the term by convex splitting meth-

od  ( )    ( )    ( ). Then the time step for computation will not be strictly 

limited in extreme range by the coefficient Capillary width    

{
  

 ̃      

  
 (    ) ̃         ( ̃   )                

 ̃   |    
       (20) 

Then we can get the pressure by solving a constant coefficient Poisson equation and 

correct the velocity filed to satisfy divergence free condition. 

{
  

      ̃   

  
   (       )

        
    |    

                                       (21) 

For variable density case, [17] and [18] serve as incentive for the novel numerical 

scheme below. To deal with the variable densities and ensure numerical stability, we 

have to define a cut-off function   ̂for the phase order parameter at first place. 

  {
             | |       

     ( )         | |                  
                              (22) 

Given initial conditions                we compute                                    
     for    .The discretization of the Cahn-Hilliard part is same with the matched 

density as equation (19) 

We update the density and viscosity by cut-off function 

{
 (    )  

     

 
 ̂    

     

 
 

 (    )  
     

 
 ̂    

      

 

                                     (23) 
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For the momentum equation part, we use 

{
 

          

  
 (   ̂    )            (    )     

                   
 

 
(
     

 
   ̂ )    

    |    

                (24) 

together with    

   
     

 
                                                     (25) 

For saving the computer time consuming and stability, we adopt schemes based on 

pressure stabilization. 

{
 

  (       )  
 

  
      

 (       )|    

  
 

 
    (      )

                                     (26) 

Pressure stabilization at the initial stage might cause velocity without physical mean-

ing because it cannot satisfy solenoidal condition strictly. If we use pressure correc-

tion method, we have to face the non-linear Poisson equation. Thus, the solution must 

cost much more time.  

3.2 Spatial discretization 

For 2-D cases, the computational domain is   (    )  (    ) ,the staggered grid 

are used for spatial discretization. The cell centers are located on        

   (  
 

 
)                              (  

 

 
)               

Where    and    are grid spacing in   and   directions.     ,    are the number of 

grids along   and   coordinates respectively. In order to discretize the coupled Cahn-

Hilliard and Navier-Stokes system, the following finite volume method is introduced.  

                     ( 
  

 

 

    )| i = 1, 2,…,      ;   j=1, 2,...,    

                     (       
 

 

)| i = 1, 2,…,   ;            j=1, 2,...,      

                     ( 
  

 

 

    )| i = 1, 2,…,   ;            j=1, 2,...,    

 

Fig. 1. The staggered grid based on finite volume method 
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Where    is cell-centered space,    and    are edge-center space,  (         )  
   ,       ,     . Some common differential and averaged operators are used to 

interpolation of these physical variables from one space to another space which are 

not discussed in detail here. 

4 Numerical Results 

4.1 Validation of the novel scheme 

Case1: a bubble rising in liquid in 2D domain 

There is a rectangular domain   (   )  (   ) filled with two-phase incompressi-

ble fluid and a lighter bubble (with density   and dynamic viscosity   ) in a heavier 

medium (with density    and dynamic viscosity   ) rises from a fixed position initial-

ly. As it described in benchmark test paper[25], the boundary condition imposed on 

the vertical walls and top wall are replaced by free slip condition. The physical pa-

rameters for case 1 follows Table 1. 

Table 1. The physical parameters for numerical test case 1. 

Case             g   M 

       1 1000 100 10 1 0.98 24.5 1 10
-5 

The initial bubble is perfect round with radius        and its center is set at the 

point (     )  (     ). The initial profile of   is set as 

 (   )        (
 

√  
(√(    )

  (    )
   )                (27) 

We must note these parameters have been through the non-dimensionalization. Mobil-

ity coefficient is an additional numerical parameter, which is not appeared in the 

sharp interface model. The value is chosen in a rational range for comparison of dif-

ferent spatial step and interface thickness. Furthermore, the interface thick   is chosen 

proportional to  . The energy density parameter   can be calculated by the surface 

tension coefficient   through the equation (4). The time step          . 

          
              (a)t=0                        (b)t=1.5                   (c)t=3.0                    (d)t=5.5 
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(e)t=8.0                    (f)t=10.0                (g)t=12.0                  (h)t=20.0 

Fig. 2. Snapshots of the bubble evolution with velocity vector field (computed on h=1/150 

grid). 

The bubble shape at the time point t=3.0 calculated by the novel scheme is com-

pared with the solution from the benchmark paper by the level-set method[25] and the 

diffuse interface method[16] in Fig 3(a). Different bubble shapes at the time t=3.0 are 

compared from the coarsest grid(h = 1/50,       ) to the finest grid (h = 1/200,   
     ). 

(a)        (b)  

Fig. 3. Bubble shapes at t=3 for the novel scheme comparing with the level-set and 

diffuse interface benchmark results provided in [16,25](a) ; bubble shapes at t=3 solved by grid 

with different refinement level and different interface thickness(b). 

The shapes of bubble differ distinctly for different values of interface thickness  . 

But they seem to be convergent so that there is no significant differences for the finest 

grid and the case with        . We can also remark that the bubble shape from 

novel scheme is quite approximate to the benchmark level-set and diffuse interface 

results. But it is clearly not sufficient to only look at the bubble shapes, therefore we 

use some previously defined benchmark quantities to validate the new scheme rigor-

ously. 

Ⅰ. Center of the mass: 

Various positions of points can be used to track the motion of bubbles. The 

most common way is to use the center of mass defined by 
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∫      

∫      
                                                          (28) 

with y as the vertical coordinate of   (   )  

(a)         (b)  

Fig. 4. Center of the mass of the bubble for the novel scheme comparing with the 

level-set and diffuse interface benchmark result provided in [16,25](a) ; Solutions of center of 

mass from grids with different refinement level and different interface thickness(b). 

Ⅱ. Rise velocity 
  is the vertical component of the bubble’s velocity  . Where     denotes 

the region that bubble occupies. The velocity is volume average velocity of bubble. 

    
∫      

∫      
                          (29) 

(a)              (b)  

Fig. 5. Rise velocity of the bubble for the novel scheme comparing with the level-set 

and diffuse interface benchmark results (a); close-up of rise velocity at maximum values area 

(b). 
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Fig. 6. Solutions of rise velocity of the bubble from grids with different refinement 

level and different interface thickness (a); close-up of rise velocity at maximum values area (b).  

Combining the contours given in Fig 3 and Fig 4 , 5 ,6 about the mass center 

and rise velocity of the lighter bubble before t=3, a significant increase in rise velocity 

can be observed at the initial stage and then the velocity decrease slowly to a constant 

value when the time advances to t=3 gradually. The shape of bubble will reach to a 

temporary steady state when the rise velocity keeps constant. The mass center of the 

bubble could be recognized as a linear function of time asymptotically after it is high-

er than y=0.6. 

Although the difference is visible for the coarsest grid and thickest interface on 

the velocity plot. It is obvious to see that results become closer and closer to the line 

corresponding to the computation on the finest grid with refinement. The results cal-

culated by the new scheme shows good agreement with the level-set solution[25] and 

benchmark diffuse interface method[16]. 
The decaying trend of discrete energy in Fig 7 confirms that the proposed 

scheme is energy stable. The whole system reaches the equilibrium state at t =25. 

           

Fig. 7. Energy dissipation of the whole system    Fig. 8. Variation of free energy and kinetic 

energy of the whole system  

Fig 8 gives the evolution of free energy and kinetic energy respectively. At the 

early stage of bubble rising, kinetic energy and free energy rise dramatically, which 

come from part of the reduced gravity potential energy. Then the velocity keep con-

stant to some extent at next stage. The bubble shape also change into a relative steady 

state. When the bubble almost touching the top lid. The kinetic energy gives a consid-

erable decrease to the zero. Then the gas phase will evolve to a stratified state finally 

under the lead of the diffusion in the Cahn Hilliard equation. 

 

Case2: novel scheme for matched density with Boussinesq approximation 

In the section, We simulate a physical problem with matched viscosities and a 

relative low density contrast(           ) which ensures the Boussinnesq ap-

proximation is applicable. We set 2d bubble diameter      ,      ,       
   ,         , Mobility=0.02 and        .The incompressible fluid in a rec-

tangular domain   (   )  (   ) with initially a lighter bubble center located on 

(     )  (     ). These dimensionless parameters are set according to the cases in 
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[15].The mesh size is         and the boundary condition at the vertical wall is 

no-slip boundary condition. 

 

 
                (a)t=2                   (b)t=2                    (c)t=10                   (d)t=10 

Fig. 8. The shape and displacement comparison of the bubble calculated by novel scheme with 

the results presented in [15] for matched density case. 

It is easy to find that the shape of the bubble and the vertical displacement at 

different time step is pretty similar with the reference contour provided in [15] by 

GUM/PSM method. The reference only have a contour line at certain  .For a beauti-

ful presentation of the integral contour calculated by the novel scheme here, we adjust 

interface thickness        . The novel scheme can be employed in the situation 

4.2 Robustness test of the novel scheme 

Case3: Examining the performance for big density contrast  
We now consider two-phase incompressible fluid with the same initial condi-

tion and boundary condition with the case1. But density and viscosity contrast is 

much more violent in this case.  

Table 2. The physical parameters for numerical test case 3. 

Case             g   M 

       3 1000 1 10 0.1 0.98 1.96 1 10
-5 

    
(a1)t=0.6                 (a2)t=1.2               (a3)t=1.8                (a4)t=3.0 
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(b1)t=0.6                  (b2)t=1.2             (b3)t=1.8               (b4)t=3.0 

                     
(c1)CFX            (c2)COMSOL         (c3)Fluent 

Fig. 8. The shapes and displacement comparison of the bubble calculated by novel scheme with 

the benchmark level-set results and the contours at t=3.0 provided by three common commer-

cial software in [25] 

The break-up of bubble happen before the time t=3.0 in the level-set benchmark. 

So it is not appropriate to compare the results from the new scheme with the contour. 

But from the results of some common commercial computing software[25]. It’s not 

that difficult to find the shape of bubble and the vertical displacement at t=3.0 solved 

by our scheme is pretty close to them. Although it could be some slight diffusion on 

the interface caused by the Cahn-Hilliard system itself. The case shows the robustness 

of the novel scheme proposed in this paper. It can not only handle an extreme numeri-

cal situation with harsh density and viscosity ratio but get reliable results to some 

extent. 

5 Concluding remark 

The numerical simulation and approximation of incompressible and immiscible 

two-phase flows with matched and variable densities and viscosities is the main topic 

in this paper. We proposed a brand new scheme for coupled diffuse interface model 

system with matched and variable densities and viscosities that satisfies the mass 

conservation and admits an energy law. Plenty of numerical experiments are carried 

out to illustrate the validation, accuracy compared with sharp interface method by the 

benchmark problem and to test the robustness of the new scheme for some extreme 

cases as well. 
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