Skip to main content

Exploiting Structures of Temporal Causality for Robust Speaker Localization in Reverberant Environments

  • Conference paper
  • First Online:
  • 1738 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

This paper introduces a framework for robust speaker localization in reverberant environments based on a causal analysis of the temporal relationship between direct sound and corresponding reflections. It extends previously proposed localization approaches for spherical microphone arrays based on a direct-path dominance test. So far, these methods are applied in the time-frequency domain without considering the temporal context of direction-of-arrival measurements. In this work, a causal analysis of the temporal structure of subsequent directions-of-arrival estimates based on the Granger causality test is proposed. The cause-effect relationship between estimated directions is modeled via a causal graph, which is used to distinguish the direction of the direct sound from corresponding reflections. An experimental evaluation in simulated acoustic environments shows that the proposed approach yields an improvement in localization performance especially in highly reverberant conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.cs.tut.fi/sgn/arg/dcase2016/.

References

  1. Drews, M.: Speaker localization and its application to time delay estimators for multi-microphone speech enhancement systems. In: European Signal Processing Conference (1996)

    Google Scholar 

  2. Busso, C., Hernanz, S., Chu, C.W., Kwon, S., Lee, S., Georgiou, P.G., Cohen, I., Narayanan, S.: Smart room: participant and speaker localization and identification. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2005)

    Google Scholar 

  3. Chen, X., Shi, Y., Jiang, W.: Speaker tracking and identifying based on indoor localization system and microphone array. In: International Conference on Advanced Information Networking and Applications (2007)

    Google Scholar 

  4. Evers, C., Moore, A.H., Naylor, P.A.: Acoustic simultaneous localization and mapping (A-SLAM) of a moving microphone array and its surrounding speakers. In: International Conference on Acoustics, Speech and Signal Processing (2016)

    Google Scholar 

  5. Schymura, C., Grajales, J.D.R., Kolossa, D.: Monte Carlo exploration for active binaural localization. In: IEEE International Conference on Acoustics, Speech and Signal Processing (2017)

    Google Scholar 

  6. Zhang, C., Florencio, D., Ba, D.E., Zhang, Z.: Maximum likelihood sound source localization and beamforming for directional microphone arrays in distributed meetings. IEEE Trans. Multimedia 10(3), 538–548 (2008)

    Article  Google Scholar 

  7. Zohourian, M., Enzner, G., Martin, R.: On the use of beamforming approaches for binaural speaker localization. In: ITG Symposium on Speech Communication (2016)

    Google Scholar 

  8. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas and Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  9. Ishi, C.T., Chatot, O., Ishiguro, H., Hagita, N.: Evaluation of a MUSIC-based real-time sound localization of multiple sound sources in real noisy environments. In: International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  10. Rickard, S., Dietrich, F.: DOA estimation of many W-disjoint orthogonal sources from two mixtures using DUET. In: IEEE Workshop on Statistical Signal and Array Processing (2000)

    Google Scholar 

  11. Nadiri, O., Rafaely, B.: Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1494–1505 (2014)

    Article  Google Scholar 

  12. Moore, A.H., Evers, C., Naylor, P.A.: Direction of arrival estimation in the spherical harmonic domain using subspace pseudointensity vectors. IEEE/ACM Trans. Audio Speech Lang. Process. 25(1), 178–192 (2017)

    Article  Google Scholar 

  13. Rafaely, B., Kolossa, D., Maymon, Y.: Towards acoustically robust localization of speakers in a reverberant environment. In: Hands-free Speech Communications and Microphone Arrays (2017)

    Google Scholar 

  14. Kuttruff, H.: Room Acoustics. Taylor & Francis, Boca Raton (2009)

    Google Scholar 

  15. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)

    Article  Google Scholar 

  16. Granger, C.W.J.: Time series analysis, cointegration, and applications. Am. Econ. Rev. 94(3), 421–425 (2004)

    Article  Google Scholar 

  17. Rafaely, B., Kolossa, D.: Speaker localization in reverberant rooms based on direct path dominance test statistics. In: IEEE International Conference on Acoustics, Speech and Signal Processing (2017)

    Google Scholar 

  18. Rafaely, B.: Fundamentals of spherical array processing. STSP, vol. 8. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45664-4

    Book  Google Scholar 

  19. Barnett, L., Seth, A.K.: The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68 (2014)

    Article  Google Scholar 

  20. Barrett, A., Barnett, L., Seth, A.K.: Multivariate granger causality and generalized variance. Phys. Rev. E 81(4), 041907 (2010)

    Article  MathSciNet  Google Scholar 

  21. Box, G.E.P.: Non-normality and tests on variances. Biometrika 40(3–4), 318–335 (1953)

    Article  MathSciNet  Google Scholar 

  22. Kim, S., Putrino, D., Ghosh, S., Brown, E.N.: A granger causality measure for point process models of ensemble neural spiking activity. PLOS Comput. Biol. 7(3), 1–13 (2011)

    MathSciNet  Google Scholar 

  23. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  24. Vector autoregressive models for multivariate time series. Modeling Financial Time Series with S-PLUS\(\textregistered \). Springer, New York (2006)

    Google Scholar 

  25. de Waele, S., Broersen, P.M.T.: Order selection for vector autoregressive models. IEEE Trans. Sign. Process. 51(2), 427–433 (2003)

    Article  Google Scholar 

  26. Alaeddini, A., Dogan, I.: Using Bayesian networks for root cause analysis in statistical process control. Expert Syst. Appl. 38(9), 11230–11243 (2011)

    Article  Google Scholar 

  27. Bondy, A., Murty, U.S.R.: Graph theory. Graduate Texts in Mathematics. Springer, London (2011)

    MATH  Google Scholar 

  28. Tarjan, R.: Depth-first search and linear graph algorithms. In: Annual Symposium on Switching and Automata Theory (1971)

    Google Scholar 

  29. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Schymura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schymura, C., Guo, P., Maymon, Y., Rafaely, B., Kolossa, D. (2018). Exploiting Structures of Temporal Causality for Robust Speaker Localization in Reverberant Environments. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics