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Abstract. Kernel Additive Modelling (KAM) is a framework for source
separation aiming to explicitly model inherent properties of sound sources
to help with their identification and separation. KAM separates a given
source by applying robust statistics on the selection of time-frequency
bins obtained through a source-specific kernel, typically the k-NN func-
tion. Even though the parameter k appears to be key for a successful
separation, little discussion on its influence or optimisation can be found
in the literature. Here we propose a novel method, based on graph theory
statistics, to automatically optimise k in a vocal separation task. We in-
troduce the k-NN hubness as an indicator to find a tailored k at a low
computational cost. Subsequently, we evaluate our method in comparison
to the common approach to choose k. We further discuss the influence
and importance of this parameter with illuminating results.

Keywords: Source Separation, Kernel Additive Modelling, Graph The-
ory, Music Processing, Vocal Separation

1 Introduction

Source separation is a discipline aiming to isolate different sources from a given
observable mixture. Amongst the methods for music source separation in a blind
underdetermined scenario (less observable mixtures than sound sources), the
major goal becomes to find inherent characteristics of the sources of interest to
help with their identification and separation.

In the last decade, a number of computationally inexpensive methods ex-
plicitly modelling the target source’s properties have gotten some attention
[1,2,3,4,5,6,7]. These methods can be understood as instances of the wider kernel
additive modelling (KAM) framework [8]. The basic idea behind KAM relies on
the repetitive nature of music by estimating the target source at a particular
point based on points at which the source’s output is somehow similar. This is
typically applied to time-frequency bins in a spectrogram representation. The
function determining the target source similarity between time-frequency bins,
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while ignoring the entries associated with other sources, is the so-called ker-
nel function. Consequently, if a magnitude of a bin deviates amongst the ones
judged to be similar by the target source kernel, one can assume there is another
overlaying source and employ order statistics to attenuate its influence.

KAM has been successfully employed for a variety of tasks in source separa-
tion, such as vocal separation, speech enhancement, percussive/harmonic sepa-
ration or interference reduction [8,9,4]. In the case of vocal separation, a popular
approach is to assume the accompaniment music to be typically more repeti-
tive and dense compared to the vocals, considered to be sparse and varied [2].
Meaning there are more segments in the mix containing the same or similar
background music than there is for vocals. The nature of these segments vary
amongst methods, such as a single repeating periodic musical pattern [2], the
temporal context surrounding every time frame [5] or just a single time frame
[1]. In all of these cases, the background music is implicitly assumed to have a
higher energy contribution than that of the vocal source.

Amongst these methods, a popular choice for the accompaniment proximity
kernel is the k nearest neighbours (k-NN) function, returning the k most similar
frames to a given frame. The proximity measure between frames is typically
based on the Euclidean distance, and therefore, two frames will be considered
to be similar if they share the same centre frequency. Within the k-NN frames
selection, if the vocal is indeed sparse it should appear as an outlier and can
therefore be separated from the more common source through median filtering
across similar bins. Since the breakdown point of the median operator is of 50%
of outliers (vocals), one could expect the choice of k to be key for a successful
separation. However, there is little or no guidance on how to set this parameter
in the literature, nor explanation of its overall influence.

Here we investigate the influence of the parameter k in a vocal separation
task and we further propose a novel method for its automatic optimisation,
based on consideration of the proximity graph, which is lightweight and needs
no prior training. In section 2 will introduce the KAM vocal separation baseline
and discuss typical methods to choose the parameter k in the K-NN proximity
kernel. We will then propose a novel computationally inexpensive method for k
optimisation in section 3 based on graph theory statistics. In section 4 we will
further analyse and discuss the impact of this parameter through an experimental
evaluation and validate the proposed method in such scenario.

2 Vocal Separation Using k Nearest Neighbours

KAM is a framework capable of combining different approaches to source sep-
aration using different assumptions to model sound sources. From the different
proximity kernel families described in [8], we will focus on the models for repet-
itive patterns in a vocal separation task. In particular, we present a subset that
can be regarded as an instance of KAM using only one iteration of the kernel
backfitting procedure described in [8], which was also used in similar form in
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the REPET family of methods [2], and later extended to account for different
repetitive patterns [7,1].

These methods take advantage of the repetitive nature of music and define a
distinction between a repeating background and a sparse varied foreground. For
vocal separation in popular music the background typically corresponds to the
music accompaniment and the vocals can be regarded as the sparse foreground.
Therefore, one can assume that the musical accompaniment contributes to most
of the energy across the frequency spectrum. We follow the method and notation
described in [1] serving as the baseline method on which we will investigate the
influence and optimisation of its single inherent parameter k.

Formally, we define the magnitude spectrogram of a musical signal as X ∈
RM×N , where M is the number of frequency bins and N the number of time
frames. For each pair of frames (j, `) ∈ {1, . . . , N}×{1, . . . , N} , we then compute
the squared Euclidean distance between the two corresponding columns in X:

Dj, ` =

M∑
m=1

(Xm, j −Xm, `)
2.

The result is a symmetric matrix D, which we can now sort to find the k nearest
neighbours to every frame by keeping track of the frame index. Then, for every
frame j, we create a matrix Aj ∈ RM×K containing as columns the specific subset
of the k most similar frames taken from X. We expect the selected k closest
frames to j to share similar musical accompaniment and differ in terms of the
vocal part. In other words, the vocal contribution in the k nearest frames to j can
be regarded as an outlier and the musical accompaniment as the commonality
between them. Consequently, the median filter is the operator of choice in [1] to
extract the common background music and separate out the vocal contribution
on each frame. The estimated magnitude spectrogram Y ∈ RM×N of the musical
accompaniment is:

Ym, j := median(Aj
m,1, . . . , A

j
m,K)

To extract both magnitude and vocals from the mixture, we use the soft mask
W ∈ [0, 1]M×N described in[1]. The complex spectrograms for the accompani-
ment and vocals can then be estimated by applying soft masks W and (1−W )
respectively to the original mixture spectrogram using an element-wise multipli-
cation.

A successful separation between background music and vocals relies largely
on the vocals actually being outliers within the selection of the k closest frames.
We want to make sure that the k-NN frames have similar background music with
no or different vocals. However, there are also frames containing matching back-
ground music and matching vocals, which will then be very likely to be selected
as near neighbours. Those frames are unhelpful for the median filtering but since
the breakdown point of the median operator is of 50% of outliers (vocals), the
method is robust to the vocal repetitions up to a point. This robustness is closely
related to the number of nearest neighbours we choose, i.e. the parameter k.

There seems to be little or no indication on the method to find the optimal
parameter k in the literature [8,1,7,5]. In [7] the authors introduce three other
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parameters to set boundaries for the choice of k. However, no indication was
found on how to actually fix any of those parameters, including k. A recent
extension introducing a temporal context R in the proximity kernel [5] performs
a parameter sweep to set the new R parameter to the value giving the best mean
metric across a dataset.

To our knowledge, there are currently two broad approaches to setting k: per-
ceptual assessment or evaluation metric optimisation. In the first approach one
simply listens to the estimates for different k values and adjusts the parameter
to the best sounding setting. This is the preferred method to set k when there
is a reduced number of songs to be processed. The second approach relies on a
metric, typically the Signal to Distortion Ratio (SDR), comparing the estimated
sound sources with the ground truth. One will set k to obtain the best metric
result. In practice, this means a parameter sweep for different k values, for which
no indication was found on how to pick. In addition, the commonly used SDR
measure is known to be a proxy for perceptual quality and its precision has been
criticised [10]. However, when dealing with large datasets, perceptual assessment
of the results can be very time consuming. Therefore, it is more typical to use
the second approach to optimise for an overall best performance.

A parameter sweeping approach to find the optimal k value has a number of
disadvantages, primarily linked to the optimisation through a performance met-
ric. Firstly, the separation performance metrics usually require to have ground
truth separate tracks available, which is not always possible in an application
scenario. Further, the commonly used separation performance metrics are com-
putationally expensive [11], limiting the parameter sweep to a reduced number
of values in a time constraint situation. In addition, optimising k using an overall
performance metric does not assure the best value for all songs in the dataset.
Moreover, fixing the k sweep values leaves no room to inform the optimisation
with the track’s individual properties, such as length.

Ideally we would like to be able to automatically pick k in an unsupervised
way for each track separately, taking into account the nature of the song and
thus finding a tailored value for k assuring a successful separation. We would
also like to do this without having to perform multiple runs of source separation
and discarding all but one of them.

3 Properties of the k-NN graph

For a given music recording, the family of KAM methods we consider depends
fundamentally for its behaviour on the set of nearest neighbours selected for
each of the N frames. These nearest neighbour relationships can be represented
as a directed graph with frames as nodes, and each node having k arcs leading
outward to its nearest neighbours. Note that if frame i is a neighbour of frame j,
the reverse is not necessarily true. At extreme settings, if k = 0 then the graph
has no arcs and thus no structure, while if k = N the graph is fully connected
and likewise exhibits no structure. What are desirable characteristics for a k-NN
graph to be used in KAM?
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Unlike many problems defined on a graph, in KAM we do not wish our graph
to take on simple structure such as well-separated clusters: instead, we want all
frames to have connections to frames which are similar according to the current
source kernel, but dissimilar in terms of the other sources. It is not clear how
these structural considerations can best be quantified numerically, though such
structure would have some impact on summary statistics considered in graph
theory.

Consider a set of frames containing a background musical phrase which is
repeated often: we would expect these to form a densely connected component in
the graph. The frames also containing sparsely-present and variable vocal energy
would be expected to have arcs pointing to that densely connected component
but few arcs pointing back out to them. Therefore, the number of incoming arcs
(i.e. in-degree) would be unevenly distributed across the nodes, directly as a
result of the observed signal properties which one assumes in KAM.

One way to analyse such properties in graph theory is the concept of ‘hubs’,
which are nodes with an unusually high in-degree [12]. This has been of particular
influence in social network theory as researchers studied effects such as ‘small
world’ phenomena, which can have important effects such as the speed at which
news or illness spreads through a social network. For a given graph, one can
define summary statistics which reflect the general presence of hubs. One referred
to as the ‘hubness’ is simply the skewness of the k-occurrence statistics, i.e.
the skewness of the distribution of the in-degrees of nodes in the graph. Here,
the k-occurrence of a frame corresponds to the number of times that frame is
amongst the k nearest neighbours, and the ‘hubness’ is therefore the skewness of
the distribution of all frames’ k-occurrence. In a k-NN graph we assign a fixed
number of arcs, and so the average in-degree is always k; however if the graph
contains strong hubs then the skewness of the in-degree will be high.

In our vocal separation application in KAM it is clear that a graph with
relatively high hubness should typically be one which has appropriate structure.
We typically have very little a priori guidance over what value of k to choose, so
it is advantageous that, for each track separately, we can iterate over a selection of
possible k, inspect graph statistics such as hubness for the graphs thus produced,
and select k which produces the optimal statistics. Therefore, we here propose
to select the k producing the maximum hubness of the associated k-NN graph.

However, in a situation where we vary k, the hubness h will vary even in
the null case of a randomly-constructed graph. (This can be seen in the extreme
cases: for k = 0 or k = N the graph is symmetric and the hubness is 0, whereas for
other k it can be nonzero.) A standard null model can be generated by selecting k
neighbours for each frame purely at random. This is related to the classic Erdős-
Rényi random graph except that it is directed rather than undirected [13]. The
distribution of k-occurrences in this null model follows a binomial distribution
with parameters N and k/N , leading to an expression for the expected hubness
as:

hnull = (1− 2k/N)/
√
k(1− k/N) (1)
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We can thus define a normalised hubness statistic as the ‘excess’ hubness, i.e. the
raw observed hubness minus the hubness expected under the null model, which
should then be less biased than the raw hubness in selecting k.

The above null model is one of the simplest random graphs. In practice,
graphs constructed from high-dimensional similarity measures do not behave
strictly in that fashion, and it is an ongoing research topic to model how k-NN
graphs behave in general [14]. In preliminary work we found that the general
scaling of the hubness statistic was out of line (larger) than in the simple null
model, and so our empirical normalisation is given as

hnorm =
h

max(h)
− hnull

max(hnull)
(2)

where maxima are across the sweep of k settings.
Using the maximum hubness as a metric to choose k has numerous advan-

tages:

1. It does not require any ground truth information
2. k is optimised per track as a pre-processing step before the separation actu-

ally takes place
3. It is quick to compute so we can sweep through a lot of different k values,

so we can have a finer optimisation
4. The hubness has been demonstrated to have perceptual relevance for song

similarity in music recommendation, suggesting that it reflects properties of
the nearest neighbour graph that have impact on its applied use. However, it
has not been used for frame selection in KAM and so that is to be explored
here.

4 Experiments and Discussion

To evaluate the proposed method, we quantitatively compare it against the stan-
dard parameter sweep for setting k in KAM for a vocal separation task. We chose
to follow the vocal separation method described in [1] with FFT size of 4096 and
hop size of 1024 samples, as it represents a baseline instance of the larger KAM
framework.

To encourage reproducibility, we use the publicly available Test Demixing
Secrets Dataset (DSD100) [15], containing 50 full length songs of diverse genres
sampled at 44.1 kHz. Since the kernel implemented relies on musical repetition,
we evaluated our proposed method on full length songs to ensure as much sound
material as possible for KAM’s source reconstruction. However, the literature
only offers some indication on k values for 30 second segments. We therefore
use a broad range of fix k values for the traditional parameter sweep, letting
k ∈ {0, 25, 50, 100, 200, 400, 800, 1600, 3200}, and a finer percent increase sweep
for the computational inexpensive proposed method taking the song length into
account, letting k ∈ {(0.001, 0.011, 0.021, 0.031, ..., 0.45) × N} where N is the
total number of time frames in the song.
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Fig. 2. SDR Boxplot of every song in the Test DSD100 dataset for different k values.
The maximum and minimum SDR obtained for each song are marked in blue and
orange respectively, showing a general trend of higher separation performance with
increasing k value.

Following common practice in the field, we employ the Signal to Distortion
Ratio (SDR) in the BSS Eval toolbox 3.0 [11] as the quantitative indicator of
the separation performance. Therefore, we would expect to observe a positive
correlation between SDR and hubness for different k values. Due to the diversity
of styles in the dataset, one could also expect an improvement in the overall sep-
aration performance (and so SDR) by using a tailored k for each song following
the proposed method.

According to the standard method to fix k, one would pick the value with a
higher overall SDR, here (Fig. 1) is the highest k of 3200 frames. Alternatively,
the positive correlation between the hubness and SDR seen in Fig. 1 suggests
the hubness to indicate the optimal k value for a successful separation.

Moreover, the similarity between boxplots in Fig. 2 for different k values
suggests there might not be an unique k that maximises the SDR of every song
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Fig. 3. SDR Boxplot of different k value for each song in the Test DSD100 dataset,
briefly described in the top axis and sorted in ascending variance order. The SDR
obtained with the maximum k value of 3200 for each song is marked in blue showing
the different behaviour between songs.

in the dataset. However, the crosses indicating the k value from that set for
which the maximum and minimum SDR was obtained for each song partly go
against this idea, as most of the separations were more successful with the highest
k value. This behaviour is surprising as the songs in the dataset present very
distinct characteristics. One would expect most of the tracks to peak at lower
k, since 3200 frames represents more than 30% of the total frames for most
songs, which seems to be so many frames that it should generally overpass the
50% of outliers breaking point of the median operator. The abundance of highly
repetitive songs could potentially explain how such large k could be successful.

However, the markers in Fig. 2 show differently as most of the songs obtained
a higher SDR with the highest k value. This behaviour comes as a surprise taking
into account the dataset’s disparity. Most tracks were expected to peak in SDR
for lower k values than 3200 frames, which seems to be so many frames that
it should generally overpass the 50% of outliers breaking point of the median
operator. The abundance of highly repetitive songs could potentially explain
how such large k could be successful, although the literature indicates the SDR
may not be a reliable metric of the actual separation performance [10].

Fig. 3 offers a different perspective on the individual song behaviour which
should shed some light on the above dilemma. As expected, very repetitive songs
such as track 45, 4 or 50, achieve a higher SDR with highest k values. However,
it is also the case for unconventional pop songs such as 43 or 17, where the
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Fig. 4. SDR values for each song in the Test DSD100 dataset sorted in ascending order,
using the optimal k issued from the standard and proposed method, in comparison to
the SDR of the raw mixture (i.e. k=0).

variance in SDR is extremely low (less than 0.05). For such cases the separation
may not have been successful, but Fig. 4 shows otherwise as the median SDR is
above the mixture’s SDR (equivalent k = 0). Further, the overall SDR variance
is surprisingly low, with a median of 1.4dB potential SDR increase by changing
k (maximum of 3.57dB and minimum of 0.17dB). With such a low potential
SDR improvement, one might wonder if k actually matters at all or again, if the
SDR is failing to capture the actual separation performance.

The majority of cases where different values of k induce substantial changes in
SDR correspond to popular songs with a classic pop musical set-up and repeating
musical structures (Fig. 3)—the ideal scenario for the implemented KAM vocal
separation as described in [1]. One could therefore infer that a track sensitive
to different k values (i.e. higher SDR variance), fulfills KAM requirements for
a successful source separation. Track 44 presents an excellent example as it
has a high SDR median and high SDR variance (2.72 dB of potential SDR
improvement). However, most of the tracks in the dataset fail to present such
characteristics, introducing a question regarding the flexibility and adaptability
of the implemented KAM for vocal separation.

Songs which fulfill KAM ideal requirements for vocal separation (sensitive
to k or highly repetitive) are expected to present higher SDR values than more
complex songs. However, Fig. 3 does not present such logic, which makes one
further wonder if the choice of separation performance metric is the adequate
choice and so perceptual models or listening tests should be adopted for separa-
tion methods evaluation.

Nevertheless, Fig. 4 shows the proposed method can be used as substitute
to the current technique for fixing k. Both methods present similar results in
most cases and although the proposed one presents lower SDR for some songs,
it seems a small trade-off for a considerable decrease in computation time (1000
times faster than the standard method).
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