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Abstract. Generalized Vector Approximate Message Passing (GVAMP)
is an efficient iterative algorithm for approximately minimum-mean-
squared-error estimation of a random vector x ∼ px(x) from generalized
linear measurements, i.e., measurements of the form y = Q(z) where
z = Ax with known A, and Q(·) is a noisy, potentially nonlinear, com-
ponentwise function. Problems of this form show up in numerous ap-
plications, including robust regression, binary classification, quantized
compressive sensing, and phase retrieval. In some cases, the prior px
and/or channel Q(·) depend on unknown deterministic parameters θ,
which prevents a direct application of GVAMP. In this paper we propose a
way to combine expectation maximization (EM) with GVAMP to jointly
estimate x and θ. We then demonstrate how EM-GVAMP can solve the
phase retrieval problem with unknown measurement-noise variance.

Keywords: Expectation Maximization, Generalized Linear Model, Com-
pressive Sensing, Phase Retrieval

1 Introduction
We consider the problem of estimating a random vector x ∈ RN from observations
y ∈ RM generated as shown in Figure 1, which is known as the generalized linear
model (GLM) [1]. Under this model, x has a prior density px and y obeys a
likelihood function of the form p(y|x) = py|z(y|Ax), whereA ∈ RM×N is a known
linear transform and z , Ax are hidden transform outputs. The conditional
density py|z can be interpreted as a probabilistic measurement channel that
accepts a vector z and outputs a random vector y. Although we have assumed
real-valued quantities for the sake of simplicity, it is straightforward to generalize
the methods in this paper to complex-valued quantities.

The GLM has many applications in statistics, computer science, and engineer-
ing. For example, in statistical regression, A and y contain experimental features
and outcomes, respectively, and x are coefficients that best predict y from A.
The relationship between y and the optimal scores z = Ax is then characterized
by py|z. In imaging-related inverse problems, x is an image to recover, A is often
Fourier-based, and py|z models the sensor(s). In communications problems, x
may be a vector of discrete symbols to recover, in which case A is a function of
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x ∼ px A py|z
z y

Unknown
input

Linear
transform

Measurement
channel

Observed
measurement

Fig. 1. Generalized Linear Model (GLM): An unknown random vector x is observed
through a linear transform A followed by a probabilistic measurement channel py|z,
yielding the measured vector y.

the modulation/demodulation scheme and the propagation physics. Or, x may
contain propagation-channel parameters to recover, in which case A is a function
of the modulation/demodulation scheme and the pilot symbols. In both cases,
py|z models receiver hardware and interference.

Below we give some examples of the measurement channels py|z that are
encountered in these applications.
– Regression often models y = z+w with additive noise w, and so py|z(y|z) =
pw(y − z), where pw is the density of w. The “standard linear model” treats
w as additive white Gaussian noise (AWGN) but is not robust to outliers.
Robust methods typically use heavy-tailed models for w.

– Binary linear classification can be modeled using ym = sgn(zm +wm), where
sgn(v) = 1 for v ≥ 0 and sgn(v) = −1 for v < 0, and wm are errors. Gaussian
wm yields the “probit” model and logistic wm yields the “logistic” model.

– Quantized compressive sensing models ym = Q(zm + wm), where Q(·) is a
scalar quantizer and wm is additive, often AWGN.

– Phase retrieval models ym = |zm| in the noiseless case, where zn ∈ C. When
noise is present, one approach is to model ym = |zm +wm| with wm ∈ C and
another is to model ym = |zm|2 + wm with real-valued wm.
In this work, we focus on the case that the prior px and the likelihood py|z

depend on parameters θ that are apriori unknown. For example, the prior px
might be Bernoulli-Gaussian with unknown sparsity rate and variance, and
the likelihood might involve an additive noise of an unknown variance. We
are interested in jointly estimating x and θ from y, where θ are treated as
deterministic. In particular, we aim to compute the ML estimate of θ and the
MMSE estimate of x under θ = θ̂ML:

θ̂ML = arg max
θ

p(y;θ) (1a)

x̂MMSE = E{x|y; θ̂ML}, (1b)

sometimes referred to as the “empirical Bayesian” approach.
For most priors and likelihoods of interest, exact computation of the condi-

tional mean in (1b) is intractable. Thus we might settle for an approximation of
the MMSE estimate x̂MMSE. In the case that A is well modeled as a realization of
a large rotationally invariant random matrix, the generalized vector approximate
message passing (GVAMP) algorithm [2] is a computationally efficient approach
to approximate-MMSE inference under the GLM in Figure 1. In the large system
limit (i.e., M,N →∞ with M/N → δ ∈ (0, 1)), it is rigorously characterized by
state-evolution whose fixed points, when unique, are Bayes optimal [3].



An Expectation Maximization Approach to Tuning GVAMP 3

For the special case of an AWGN likelihood, i.e., py|z(y|z) = N (y; z, νwI) for
some νw > 0, GVAMP reduces to the simpler VAMP algorithm [4]. By merging
VAMP with expectation maximization (EM) [5], one obtains the “EM-VAMP”
approach [6] to the empirical-Bayesian estimation problem (1). In fact, with large
right-rotationally invariant A, EM-VAMP is rigorously characterized by state-
evolution [7]. Furthermore, under some identifiability conditions, it is possible to
show that EM-VAMP yields an asymptotically efficient estimate of θ.

In this paper, we propose a way to merge EM and GVAMP to tackle GLMs
of the form discussed above. This yields, for example, a way to handle phase
retrieval with unknown measurement-noise variance. The proposed “EM-GVAMP”
approach is described in the next section.

2 EM-GVAMP
In the sequel we assume a GLM of the form

p(y|z;θz) =

M∏
i=1

p(yi|zi;θz), z = Ax, p(x;θx) =

N∏
j=1

p(xj ;θx), (2)

where θ , [θx,θz] are unknown deterministic parameters, and where z ∈ RM
and x ∈ RN .

2.1 The EM Algorithm

Recalling the empirical-Bayesian methodology (1), the maximum-likelihood esti-
mate of θ given y can be written as

θ̂ = arg min
θ

{
− ln p(y;θ)

}
, (3)

where

p(y;θ) =

∫
p(y, z,x;θ) dzdx =

∫
p(y|z,x;θ)p(z,x;θ) dz dx

=

∫
p(y|z;θz)δ(z−Ax)p(x;θx) dzdx. (4)

Although p(y;θ) is difficult to work with directly, the expectation-maximization
(EM) algorithm [8] offers an alternative. There, the idea is to write

− ln p(y;θ) = J(b;θ)−D(b ‖ p(x|y;θ)) (5)

for an arbitrary belief b(x), where D(·‖·) is KL divergence,

J(b;θ) , D(b ‖ p(x;θx)) +D(b ‖ p(y|x;θz)) +H(b) (6)

is known as the Gibbs free energy, and H(b) is the entropy of b. Because
D(b ‖ p(x|y;θ)) ≥ 0 for any b, we have that J(b;θ) is an upper bound on
− ln p(y;θ), the quantity that ML seeks to minimize. Thus, if it is tractable to
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construct and minimize J(b;θ), it makes sense to iterate the following two steps
(over k = 1, 2, . . . ):

E step: bk(x) = p(x|y; θ̂
k
) (7)

M step: θ̂
k+1

= arg min
θ
J(bk;θ) = arg min

θ
D(bk ‖ p(x;θx)) +D(bk ‖ p(y|x;θz)),

(8)

which together constitute the EM algorithm. The “E” step creates an upper
bound on − ln p(y;θ) that is tight at θ = θ̂

k
, and the “M” step finds the estimate

of θ that minimizes this bound.
Unfortunately, however, the posterior density required by the E-step (7),

p(x|y;θ) =
p(x;θx)p(y|x;θz)

p(y;θ)
=

p(x;θx)
∫
p(y|z;θz)δ(z−Ax) dz∫

p(x;θx)p(y|z;θz)δ(z−Ax) dz dx
, (9)

is difficult to compute due to the high-dimensional integration. Thus we consider
an approximation afforded by the GVAMP algorithm [2]. For this, we first
reparameterize the GLM (2) as a standard linear model (SLM).
2.2 An SLM Equivalent
The GLM (2) can be written as an SLM using the following formulation:

y = Ax + w with y , 0, A ,
[
A −IM

]
, x ,

[
x
z

]
, w ∼ N (0, εIM ) s.t. ε→ 0.

(10)

Here, x is apriori independent of z; the dependence between x and z manifests
only aposteriori, i.e., after the measurement y is observed. For x, we assign
the prior p(x;θx), and for z we assign the improper (i.e., unnormalized) prior
p(y|z;θz). The lack of normalization will not be an issue in GVAMP, because
the “prior” p(y|z;θz) is used only to compute posteriors of the form

p(z|y; p̂, τ,θz) ∝ p(y|z;θz)N (z; p̂, I/τ), (11)

which are well defined because the right side is always integrable over z.
Let us first consider direct ML estimation of θ in the above SLM. The

θ-likelihood function is

p(y;θ) =

∫
p(y,x;θ) dx =

∫
p(y|x)p(x;θ) dx =

∫
N (y;Ax, εI)p(x;θ) dx

=

∫
N (z;Ax, εI)︸ ︷︷ ︸
→ δ(z−Ax)

p(x;θx)p(y|z;θz) dx dz, (12)

which is consistent with (4) as ε→ 0. Likewise, for any belief b(x), we can upper
bound the negative log-likelihood by a Gibbs free energy J̄(b;θ) of the form

J̄(b;θ) , D(b ‖ p(x;θ)) +D(b ‖ p(y|x)) +H(b), (13)
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since − ln p(y;θ) = J̄(b;θ) − D(b ‖ p(x|y;θ)) with D(b ‖ p(x|y;θ)) ≥ 0. The
corresponding EM algorithm is

E step: bk(x) = p(x|y; θ̂
k
) (14)

M step: θ̂
k+1

= arg min
θ
J̄(bk;θ) = arg min

θ
D(bk ‖ p(x;θ)). (15)

As before, the posterior density required by the E-step (14)

p(x|y;θ) =
p(x;θ)p(y|x)

p(y;θ)
=

p(x;θx)p(y|z;θz)δ(z−Ax)∫
p(x;θx)p(y|z;θz)δ(z−Ax) dzdx

, (16)

is difficult to compute due to the high-dimensional integral. Thus we consider an
approximation afforded by the GVAMP algorithm [2], as described in the next
section.

2.3 GVAMP
Recall that the exact posterior can (in principle) be found by solving the varia-
tional optimization problem

p(x|y;θ) = arg min
b
D(b ‖ p(x|y;θ)) (17)

= arg min
b
J̄(b;θ) (18)

= arg min
b
D(b ‖ p(x;θ)) +D(b ‖ p(y|x)) +H(b), (19)

where (18) follows from J̄(b;θ) = D(b ‖ p(x|y;θ)) − ln p(y;θ) and (19) follows
from (13). But since the posterior computation problem is NP hard in general, (19)
is no more tractable than any other approach. The GVAMP algorithm computes
a posterior approximation using the expectation-consistent (EC) method [9, 10].
In this application of EC, we first split b(x) into three copies, i.e.,

p(x|y;θ) = arg min
b1=b2=q

D(b1 ‖ p(x;θ)) +D(b2 ‖ p(y|x)) +H(q), (20)

and then relax the density-matching constraint b1 = b2 = q to a moment-matching
constraint:

p(x|y;θ) ≈ arg min
b1,b2,q

D(b1 ‖ p(x;θ)) +D(b2 ‖ p(y|x)) +H(q) (21)

s.t. E[x|b1] = E[x|b2] = E[x|q] and tr2{Cov[x|b1]}
= tr2{Cov[x|b2]} = tr2{Cov[x|q]}, (22)

where E[x|bi] and Cov[x|bi] denote the expectation and covariance of x under
x ∼ bi(x), and where

tr2

([
A B
BT C

])
,

[
tr(A)
tr(C)

]
for A ∈ RN×N and C ∈ RM×M . (23)
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Essentially, tr2{Cov[x]} separately computes the trace of the covariance of x
and the trace of the covariance of z. The right side of (21) yields three different
approximations of the posterior:

b1(x;θ) ∝ p(x;θ)N
(
x;

[
r1
p1

]
,

[
IN/γ1

IM/τ1

])
(24)

b2(x;θ) ∝ p(y|x)N
(
x;

[
r2
p2

]
,

[
IN/γ2

IM/τ2

])
(25)

q(x;θ) ∝ N
(
x;

[
x̂
ẑ

]
,

[
IN/η

IM/ζ

])
, (26)

where the form of (24)-(26) can be deduced by analyzing the stationary points
of the Lagrangian of (21), as shown in [9].

The GVAMP algorithm is an iterative approach to finding the values of
r1, γ1,p1, τ1, r2, γ2,p2, γ2, x̂, η, ẑ, ζ under which the three beliefs in (24)-(26) obey
the moment constraints in (21). When A is large and rotationally invariant,
GVAMP is rigorously characterized by a state evolution [3]. Empirically, we find
that the algorithm converges quickly in this scenario (e.g., on the order of 10
iterations).

Note that the values of r1, γ1,p1, τ1, r2, γ2,p2, γ2, x̂, η, ẑ, ζ that satisfy the
moment constraints are interdependent, and thus they all depend on the assumed
value of θ through (24).

2.4 EM-GVAMP

Recall that our current motivation for using GVAMP is to compute an approx-
imation to the posterior bk(x) = p(x|y; θ̂

k
) in the EM algorithm (14)-(15). Of

the three posterior approximations produced by GVAMP, the Gaussian approxi-
mation from (26) is the simplest to use for this purpose. Plugging the Gaussian
approximation into (14)-(15) yields

E step: bk(x) = N
(
x;

[
x̂k

ẑk

]
,

[
IN/η

k

IM/ζ
k

])
found via GVAMP with θ = θ̂

k

(27)

M step: θ̂
k+1

= arg min
θ
D(bk ‖ p(x;θ)). (28)

The difference between the EM algorithm (14)-(15) and the EM algorithm (27)-
(28) is that, in the former case, the bound is tight at each EM iteration k, whereas
in the latter case the bound is only approximately tight.
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Due to the form of bk(x) in (27), the M-step is relatively easy to compute:

θ̂
k+1

= arg min
θ
D(bk ‖ p(x;θ)) (29)

= arg min
θ
D
(
N (x; x̂k, IN/η

k)N (z; ẑk, IM/ζ
k)
∥∥ p(x;θx)p(y|z;θz)

)
(30)

= arg max
θ

∫
N (x; x̂k, IN/η

k) ln p(x;θx) dx

+

∫
N (z; ẑk, IN/ζ

k) ln p(y|z;θz) dz (31)

= arg max
θ

N∑
j=1

∫
N (xj ; x̂

k
j , 1/η

k) ln p(xj ;θx) dxj

+

M∑
i=1

∫
N (zi; ẑ

k
i , 1/ζ

k) ln p(yi|zi;θz) dzi. (32)

The resulting (θ̂
k+1

x , θ̂
k+1

z ) are necessarily values of (θx,θz) that zero the gradient
of the right side of (32) with respect to θx and to θz.

3 Application to Noise-Variance Estimation in Phase
Retrieval

In this section we will demonstrate how the EM procedure can be used to estimate
noise variances in the context of phase retrieval. Noise variance estimation in this
setting has also been performed in [11] and [12]. The below derivation is related
to, but distinct from, these previous works.

Phase retrieval is a problem that can be formulated in the GLM setting [11],
allowing application of the GVAMP algorithm [13]. We denote the special case
of GVAMP applied to phase retrieval as prVAMP.

One way to model the ith measured intensity yi is via

yi =
∣∣zi + wi

∣∣ for i.i.d. wi ∼ N (0, νw), (33)

where zi, wi ∈ C and N (wi;µ, ν) = 1
πν exp(−|wi − µ|2/ν) represents a circular

complex-Gaussian density with mean µ ∈ C and variance ν > 0. In this case, the
measurement noise variance νw may be unknown in practice, and so we might
try to estimate it using the methods described in this report. In that case, the
unknown z-likelihood parameters “θz” reduce to νw. In the sequel, we will use
the notation νw instead of θz.

It was shown [11] that, under (33), the zi-likelihood function p(yi|zi; νw) takes
the form

p(yi|zi; νw) = 1yi≥0 yi

∫ 2π

0

N (yie
jθi ; zi, νw) dθi (34)

=
2yi
νw

exp

(
−y

2
i + |zi|2

νw

)
I0

(
2yi|zi|
νw

)
1yi≥0, (35)
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where I0(·) is the 0th-order modified Bessel function of the first kind. If we view
p(yi|zi; νw) as a density on yi, then yi is Rician (conditional on zi). Note that θi
above denotes the (hidden) phase on zi + wi; it should not be confused with the
statistical parameters θ described earlier in this paper.

From (32), we see that the EM estimate ν̂k+1w of νw must obey

0 =
∂

∂νw

M∑
i=1

∫
C
N (zi; ẑ

k
i , 1/ζ

k) ln p(yi|zi; ν̂k+1w ) dzi (36)

=

M∑
i=1

∫
C
N (zi; ẑ

k
i , 1/ζ

k)
∂

∂νw
ln

∫ 2π

0

N (yie
jθi ; zi, ν̂

k+1
w ) dθi dzi (37)

=

M∑
i=1

∫
C
N (zi; ẑ

k
i , 1/ζ

k)

∫ 2π

0
∂
∂νw
N (yie

jθi ; zi, ν̂
k+1
w ) dθi∫ 2π

0
N (yiejθ

′
i ; zi, ν̂

k+1
w ) dθ′i

dzi. (38)

Plugging in the derivative expression (see [14])

∂

∂νw
N (yie

jθi ; zi, ν̂
k+1
w ) =

N (yie
jθi ; zi, ν̂

k+1
w )

2(ν̂k+1w )2

(
|yiejθi − zi|2 − ν̂k+1w

)
(39)

into (38) and multiplying both sides by 2(ν̂k+1w )2, we find

ν̂k+1w =
1

M

M∑
i=1

∫
C
N (zi; ẑ

k
i , 1/ζ

k)

∫ 2π

0
|yiejθi − zi|2N (yie

jθi ; zi, ν̂
k+1
w ) dθi∫ 2π

0
N (yiejθ

′
i ; zi, ν̂

k+1
w ) dθ′i

dzi

(40)

=
1

M

M∑
i=1

∫
C
N (zi; ẑ

k
i , 1/ζ

k)

∫ 2π

0

|yiejθi − zi|2p(θi; zi, ν̂k+1w ) dθi dzi (41)

with the newly defined pdf

p(θi; zi, ν̂
k+1
w ) ,

N (yie
jθi ; zi, ν̂

k+1
w )∫ 2π

0
N (yiejθ

′
i ; zi, ν̂

k+1
w ) dθ′i

∝ exp
(
− |zi − yie

jθi |2

ν̂k+1w

)
(42)

∝ exp
(
κi cos(θi − φi)

)
for κi ,

2|zi|yi
ν̂k+1w

, (43)

where φi denotes the phase of zi. The expression (43) identifies this pdf as a von
Mises distribution [15], which can be stated in normalized form as

p(θi; zi, ν̂
k+1
w ) =

exp(κi cos(θi − φi))
2πI0(κi)

. (44)
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Expanding the quadratic in (41) and plugging in (44), we get

ν̂k+1w =
1

M

M∑
i=1

∫
C
N (zi; ẑ

k
i , 1/ζ

k)

(
y2i + |zi|2

− 2yi|zi|
∫ 2π

0

cos(θi − φi)
exp(κi cos(θi − φi))

2πI0(κi)
dθi

)
dzi (45)

=
1

M

M∑
i=1

∫
C
N (zi; ẑ

k
i , 1/ζ

k)

(
y2i + |zi|2 − 2yi|zi|R0

(
2|zi|yi
ν̂k+1w

))
dzi, (46)

where R0(·) is the modified Bessel function ratio R0(κi) , I1(κi)/I0(κi) and (46)
follows from [16, 9.6.19].

Simplifying approximations of (46) could be taken as needed. For example,
in the high-SNR case, the expansion R0(κ) = 1 − 1

2κ −
1

8κ2 − 1
8κ3 + o(κ−3)

from [17, Lemma 5] could be used to justify

R0(κ) ≈ 1− 1

2κ
, (47)

which, when applied to (46), yields

ν̂k+1w ≈ 2

M

M∑
i=1

∫
C

(
yi − |zi|

)2N (zi; ẑ
k
i , 1/ζ

k) dzi. (48)

Approximation (48) can be reduced to an expression that involves the mean of a
Rician distribution. In particular, using zi = ρie

jφi , the integral in (48) can be
converted to polar coordinates as follows:∫ ∞

0

(
yi − ρi

)2 ∫ 2π

0

N (ρie
jφi ; ẑki , 1/ζ

k) dφiρi︸ ︷︷ ︸
2ρi

1/ζk
exp

(
−ρ

2
i + |ẑki |2

1/ζk

)
I0

(
2ρi|ẑki |
1/ζk

)
1ρi≥0

dρi = y2i − 2yiE[ρi] + E[ρ2i ], (49)

where, for the expectations, ρi has the Ricean density under the brace. For this
density, it is known that

E[ρi] =

√
π

4ζk
L1/2

(
−ζk|ẑki |2

)
(50)

E[ρ2i ] = 1/ζk + |ẑki |2, (51)

where the Laguerre polynomial L1/2(x) can be computed as

L1/2(x) = exp
(x

2

) [
(1− x)I0

(
−x

2

)
− xI1

(
−x

2

)]
. (52)

Note that, for reasons of numerical precision, exp(x/2)Id(−x/2) is computed
using “besseli(d,−x/2,1)” in Matlab, not “exp(x/2).*besseli(d,−x/2).”
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(a) σ2
w = 100 (b) σ2

w = 75

(c) σ2
w = 50 (d) σ2

w = 25

Fig. 2. Reconstruction errors (left subplots) and estimates of σ2
w (right subplots) with

different initial estimates of σw
2. The EM procedure is capable of estimating the true

noise variance over a range of operating conditions. Using this estimate of the noise
variance incrementally improves recovery accuracy.

4 Simulations
In this section, we demonstrate the effectiveness of the EM procedure in simulation.
In particular, we show how EM can approximately recover the noise variance
even when initialized by estimates far from the ground truth. This in turn enables
improved signal reconstruction when the noise variance is apriori unknown.

We set up our simulations as follows. We aim to recover an i.i.d. circular
Gaussian random vector x ∈ Cn, with variance

√
2, from phaseless noisy mea-

surements of the form y = |Ax+ w|. Our measurement matrix A is 8192× 1024
and the elements of A are i.i.d. circular Gaussian with variance

√
2. The elements

of the noise vector w also follow an i.i.d. circular Gaussian distribution, but with
variance σ2

w. We test the cases of σ2
w = 100, σ2

w = 75, σ2
w = 50, and σ2

w = 25.
prVAMP was provided with initial estimates of σ2

w ranging from 1% to 10× the
true variance. Using these initializations, we reconstructed the signal with and
without the EM procedure.

Figure 2 presents our reconstructions. The results demonstrate that EM can
be used to estimate σ2

w. Moreover, it shows that this estimate lets prVAMP
accurately reconstruct the signal even when σw is not known apriori.

Code demonstrating the EM procedure is available at http://gampmatlab.
wikia.com/wiki/Generalized_Approximate_Message_Passing.

5 Conclusion
This paper combines EM and GVAMP to estimate the unknown channel param-
eters associated with GLMs. This in turn enables GVAMP to estimate signals
from their generalized linear measurements. In this paper we applied the pro-
posed technique to phase retrieval and showed that it is effective at estimating
unknown noise variances, thus enabling noise robust phase retrieval over a range
of operating conditions.

http://gampmatlab.wikia.com/wiki/Generalized_Approximate_Message_Passing
http://gampmatlab.wikia.com/wiki/Generalized_Approximate_Message_Passing
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