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Abstract. This work proposes the application of independent compo-
nent analysis to the problem of ranking different alternatives by consider-
ing criteria that are not necessarily statistically independent. In this case,
the observed data (the criteria values for all alternatives) can be modeled
as mixtures of latent variables. Therefore, in the proposed approach, we
perform ranking by means of the TOPSIS approach and based on the
independent components extracted from the collected decision data. Nu-
merical experiments attest the usefulness of the proposed approach, as
they show that working with latent variables leads to better results com-
pared to already existing methods.
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1 Introduction

Many practical situations in multicriteria decision making (MCDM) consist in
obtaining a ranking of a set of alternatives based on their evaluation according
to a set of criteria [1,2]. The main difference between the existing methods that
perform ranking in MCDM is related to the criteria aggregation procedure. For
instance, a natural way to perform aggregation is to consider a simple weighted
sum [2] for all criteria and for a given alternative. Another strategy can be found
in TOPSIS method (TOPSIS stands for Technique for Order Preferences by
Similarity to an Ideal Solution) [3]. In this method, one firstly defines a positive
and a negative ideal alternative. Then, aggregation for a given alternative is done
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by calculating the Euclidean distances between the alternative under evaluation
and the (positive and negative) ideal alternatives.

The original versions of the aforementioned approaches do not take into ac-
count any relation among criteria, which may lead to biased results in the ag-
gregation step. Indeed, if, for instance, there are two criteria strongly correlated
which are governed by a latent factor, then such a latent factor will have a
strong influence on the aggregation step. In view of this inconvenient, there are
some methods that try to deal with possible relations among the observed cri-
teria [4,5,6,7,8]. Among them, an interesting approach is an extended version of
TOPSIS [5,7,8]. In this version, instead of considering the Euclidean distance in
the aggregation step, one applies the Mahalanobis distance. Therefore, the cal-
culation of the distance measure takes into account the covariance matrix among
criteria.

However, a question that arises is whether the information about the covari-
ance among criteria is sufficient to mitigate the biased effect of dependent crite-
ria. Motivated by this question, this paper proposes a novel three-step procedure
to deal with correlated criteria in decision making problems. In the first step of
our proposal, we formulate the problem as a Blind Source Separation (BSS) [9]
problem and apply an Independent Component Analysis (ICA) method to esti-
mate the latent variables. The second step comprises the elimination of permu-
tation and/or scale ambiguities provided by ICA. In the third step, we perform
the TOPSIS approach based on the Euclidean distance on the estimated latent
variables in order to obtain a global evaluation of the alternatives, thus allowing
a final ranking. Aiming at verifying the proposed ICA-TOPSIS approach, we
performed numerical experiments on synthetic data and compared the results
obtained by our approach and the TOPSIS based on Mahalanobis distance.

The rest of this paper is organized as follows. Section 2 discusses the main the-
oretical aspects about multicriteria decision making and blind source separation
problems. Then, in Section 3, we present the proposed ICA-TOPSIS approach.
The numerical experiments are described in Section 4. Finally, in Section 5, we
present our conclusions and future perspectives.

2 Theoretical background

This section presents the theoretical aspects involved in multicriteria decision
making and blind source separations problems.

2.1 Multicriteria decision making problems and TOPSIS method

The most relevant problems in MCDM consist in ranking a set of K alternatives
(A = [A1, A2, . . . , AK ]) based on a set of M criteria (C = [C1, C2, . . . , CM ]). For
each alternative Ai, vi,j represents its evaluation with respect to the criterion
Cj . Therefore, in a MCDM problem, we often face with the following decision
matrix (or decision data):
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V =

C1 C2 . . . CM

A1

A2

...
AK


v1,1 v1,2 . . . v1,M
v2,1 v2,2 . . . v2,M

...
...

. . .
...

vK,1 vK,2 . . . vK,M

 . (1)

Based on the decision matrix V and the set of weights w = [w1, w2, . . . , wM ],
which represent the “importance” of criterion Cj in the decision problem, the
goal is to aggregate vi,j , j = 1, . . . ,M in order to obtain a global evaluation for
each alternative Ai and, then, to establish a ranking.

Several methods have been developed to deal with MCDM problems. Among
them, a widely used one is the TOPSIS, developed by Hwang and Yoon [3]. The
main idea of this method is to determine the ranking based on the distances
between each alternative and the (positive and negative) ideal solutions, as will
be described in the sequel. The following steps describe the algorithm1:

1. The first step comprises the normalization of each evaluation vi,j , given by

ri,j =
vi,j√∑K
i=1 v

2
i,j

, i = 1, . . . ,K, j = 1, . . . ,M. (2)

2. Based on ri,j , we calculate the weighted normalized evaluation, given by

pi,j = wjri,j , i = 1, . . . ,K, j = 1, . . . ,M. (3)

3. In this step, we determine the positive ideal solution (PIS) and the negative
ideal solution (NIS), given by

PIS = p+ =
{
p+1 , p

+
2 , . . . , p

+
M

}
, (4)

where p+j = max{pi,j |1 ≤ i ≤ K}, j = 1, . . . ,M , and

NIS = p− =
{
p−1 , p

−
2 , . . . , p

−
M

}
, (5)

where p−j = min{pi,j |1 ≤ i ≤ K}, j = 1, . . . ,M .
4. Given PIS and NIS derived in the last step, we calculate the distances (us-

ing Euclidean distance) from each evaluation vector pi = [pi,1, pi,2, . . . , pi,M ]
representing alternative Ai and both ideal solutions, described as follows:

D+
i =

√
(pi − p+)

T
(pi − p+), i = 1, . . . ,K (6)

and

D−i =

√
(pi − p−)

T
(pi − p−), i = 1, . . . ,K. (7)

1 We considered in this paper that all the criteria are to be maximized, i.e. the larger
the better. However, if there are criteria to be minimized in the problem, some simple
adaptations must be incorporated in the algorithm steps. For further details, please
see [3].
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5. In the last step, we determine the similarity measure of each alternative Ai

to the ideal solutions, given by

ui =
D−i

D+
i +D−i

, i = 1, . . . ,K, (8)

and derive the ranking according to ui in descending order.

In this approach, one may note that the criteria are aggregated without
taking into account any interaction between them. For example, in scenarios
in which the criteria are correlated, i.e. they are composed by a combination
of latent variables, disregarding the interaction may lead to biased results. In
this context, an extended version of TOPSIS was proposed [7,8], which takes
into account the Mahalanobis distance [10] (instead of Euclidean distance) and,
therefore, exploit the covariance among criteria. In this version, the distances
calculated in step 4 are given by

DM+
i =

√
(ri − r+)

T
∆TΣ−1∆ (ri − r+), i = 1, . . . ,K (9)

and

DM−i =

√
(ri − r−)

T
∆TΣ−1∆ (ri − r−), i = 1, . . . ,K, (10)

where ri = [ri,1, ri,2, . . . , ri,M ], r+ and r− are, respectively, the positive and
the negative ideal solutions derived from the normalized data R = (ri,j)K×M ,
∆ = diag (w1, w2, . . . , wM ) is the diagonal matrix whose elements are composed
by the weights w and Σ ∈ RM×M is the covariance matrix of R. The similarity
measure is calculated as described in step 5.

2.2 Blind source separation problems and independent component
analysis

Let us suppose a set of signal sources s(k) = [s1(k), s2(k), . . . , sN (k)] that were
linearly mixed according to

x(k) = As(k) + g(k), (11)

where A ∈ RM×N is the mixing matrix, x(k) = [x1(k), x2(k), . . . , xM (k)] is the
set of mixed signals and g(k) = [g1(k), g2(k), . . . , gM (k)] is an additive white
Gaussian noise (AWGN). In this linear case, BSS problems consist in retrieving
the signal sources s(k) based only on the observed mixed data x(k), i.e. without
the knowledge of both s(k) and mixing matrix A [9]. This can be achieved
by adjusting a separating matrix B ∈ RN×M that provides a set of estimates
y(k) = [y1(k), y2(k), . . . , yN (k)], given by

y(k) = Bx(k), (12)

which should be as close as possible from s(k). In this scenario, the separat-
ing matrix B should converge to the inverse of the unknown mixing matrix A.
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However, given the permutation and scaling ambiguities inherent in BSS meth-
ods [9], B may not be exactly the inverse of A. As will be discussed latter on
this paper, we made some assumptions on the problem in order to avoid these
inconveniences.

There are several approaches used to deal with BSS problems. A common
one, called ICA, is based on the assumption that the sources are i.i.d. (indepen-
dent and identically distributed) and non-Gaussian. Given the mixing process
expressed in (11), the observed sources are not independent anymore but close to
Gaussian. Therefore, a simplified strategy to recover signal sources that are sta-
tistically independent is to formulate an optimization problem in which the cost
function leads to the minimization of a Gaussian measure (e.g. kurtosis or negen-
tropy) of the retrieved signals. An algorithm that is based on these assumptions
is known as FastICA [11]. Another method that is used in BSS problems is the
Infomax, proposed by Bell and Sejnowski [12]. This method, as demonstrated
by Cardoso [13], is closed-related to the maximum likelihood approach, which
estimate the separating matrix B from the distribution of x(k). Both strategies
will be used in our experiments.

3 The proposed ICA-TOPSIS approach

In several problems in MCDM the criteria are dependent. For example, consider
the case of determining a ranking of K students evaluated according to their
grades in sociology, mathematics and physics2. It is possible that both grades
in mathematics and physics are correlated criteria, since they usually measure
similar competences. Therefore, the aggregation based on the collected data may
lead to biased results. In this case, one may think that a proper analysis should
be made in the latent variables l(k) = [l1(k), l2(k), . . . , lN (k)]T associated with
the collected data V through the mixing process

VT = Al(k) + g(k), (13)

where A ∈ RM×N represents the mixing process acting on the latent variables
l(k) and g(k) = [g1(k), g2(k), . . . , gM (k)] is an additive white Gaussian noise
(AWGN). One may note that equation (13) is similar to (11), with l(k) and
VT representing, respectively, the set of signal sources and the mixed signals.
Therefore, aiming at performing the MCDM analysis on the latent variables,
as mentioned in Section 1, the application of Mahalanobis distance in TOPSIS
approach may not be sufficient to deal with dependent criteria, since only the
information of covariance among criteria is taken into account.

In this context, this paper proposes to deal with the problem of dependent
criteria in MCDM applying an ICA-TOPSIS approach, which comprises three
steps. In the first one, we formulate a BSS problem whose aim is to recover
the latent variables based on the mixed decision data V. In this formulation,

2 It is worth mentioning that this MCDM problem is addressed by other works in the
literature [4,14]
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we consider that the number of criteria is equal to the number of latent vari-
ables, which leads to the determined case M = N in BSS. Therefore, after
estimating the separating matrix B, we obtain the estimated latent variables
l̂(k) = [l̂1(k), l̂2(k), . . . , l̂N (k)]T , given by

l̂(k) = BVT , (14)

similarly as described in (12).
The second step comprises the adjustment of the estimated latent variables in

order to avoid permutation and/or scale ambiguities. In this procedure, we made
the assumption that the diagonal elements in the mixing matrix A is positive
and greater, in absolute value, than all the off-diagonal elements in the same
row, i.e. each latent variable has a positive majority influence in each mixed
criterion. Therefore, based on the separating matrix B and, consequently, on
the estimated mixing matrix Â = B−1, we perform the following adjustment3:

– For the first row in Â, we find the column q in which the greater absolute
value is located. Therefore, we permute the first and the q columns of Â. In
order to correctly resetting the estimated latent variables, we also permute
the first and the q estimates. After repeating this procedure for all rows in Â,
we obtain the estimated mixing matrix partially adjusted ÂAdjp and avoid
the permutation ambiguity provided by the BSS method.

– Based on the assumption that the diagonal elements in the mixing matrix A
is positive, if a diagonal element q′ of ÂAdjp is negative, we multiply all the
elements in the same column of q′ by −1. This leads to the signal inversion
of the estimated latent variable l̂q′ , since equation (13) needs to be valid.

After verifying all the diagonal elements of ÂAdjp and performing the signal
changes, we obtain the final adjusted estimated mixing matrix ÂAdjf and
avoid the scale ambiguity provided by the −1 factor.

In order to illustrated these adjustments, suppose that we achieve the esti-
mated mixing matrix

Â =

[
1.52 −2, 95
2.01 0.85

]
associated with the retrieved sources l̂(k) = [l̂1(k), l̂2(k)]T . Based on our assump-
tions, the first adjustment leads to

ÂAdjp =

[
−2.95 1.52
0.85 2.01

]
,

and to the retrieved sources partially adjusted l̂Adjp(k) = [l̂2(k), l̂1(k)]. One may
note the permutation of both columns. In the second adjustment, we obtain

ÂAdjf =

[
2.95 1.52
−0.85 2.01

]
3 It is worth mentioning that the scale ambiguity provided by a positive factor or a

negative factor different from −1 is automatically mitigated in the normalization
step of TOPSIS.
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and l̂Adjf (k) = [−l̂2(k), l̂1(k)], which corrects the signal of the retrieved sources.
After performing the ICA and eliminating the ambiguities, the third step of

the proposed approach comprises the application of TOPSIS based on Euclidean
distance in l̂Adjf (k) and the ranking determination.

4 Numerical experiments

Aiming at verifying the application of the proposed ICA-TOPSIS approach to
deal with dependent criteria in MCDM problems, we performed numerical exper-
iments based on synthetic data and compared the results with the ones provided
by existing methods. The next section describes the considered data and the
obtained results.

4.1 Data generation

In this paper, we performed the experiments based on a decision data comprised
by 100 alternatives and 2 criteria, both with the same importance (w1 = w2 =
0.5). The latent variables were randomly generated according to a uniform dis-
tribution in the range [0, 1]. In order to derive the “collected” observed data V,
we considered the mixing matrix

A =

[
1.00 −0.15
0.30 1.00

]
and the mixing process described in (11), in which s(k) and x(k) represent the
latent variables and the observed data V, respectively. Moreover, the additive
noise was applied considering a Signal-to-Noise Ratio (SNR), given by

SNR = 10 log10

σ2
signal

σ2
noise

, (15)

where σ2
signal and σ2

noise are, respectively, the signal power and the noise power,
in the range (0, 50].

4.2 Comparison between the considered approaches

In order to verify the application of the proposal, we first generate the latent
variables and derive the ranking according to the original TOPSIS method (based
on Euclidean distance). This ranking is considered as the correct one, since it
is obtained directly from the (unknown) latent variables. Therefore, we perform
the mixing process and, given the mixed observed data, we apply the proposed
ICA-TOPSIS approach (based on FastICA and Infomax algorithms), the original
TOPSIS and the TOPSIS based on Mahalanobis distance. The obtained results
are compared according to a performance index called normalized Kendall tau
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distance [15], which calculates the percentage of pairwise disagreements between
two rankings. This measure is defined by

τ =
ND

K(K − 1)/2
, (16)

where ND is the number of pairwise disagreements between the rankings and K
is the number of alternatives. Therefore, τ close to zero indicates that there is
no disagreement between the two rankings, i.e. the obtained ranking is the same
that the correct one provided by the original TOPSIS method applied on the
latent variables.

Figure 1 presents the Kendall tau distance for each considered method and
SNR value (averaged over 1000 realizations). One may note that the TOPSIS
based on Mahalanobis distance improves the original version of this method,
leading to lower values of τ . However, the best results were obtained applying
the ICA-TOPSIS, specially for SNR values greater than 25 dB. In terms of the
FastICA and Infomax algorithms, the former achieved a better performance.

Fig. 1. Comparison of the Kendall tau distances for the original TOPSIS based on Eu-
clidean distance (TOPSIS-E), the TOPSIS based on Mahalanobis distance (TOPSIS-
M) and the proposed approach (with FastICA and Infomax).

5 Conclusions and perspectives

Dependent criteria is an important issue in multicriteria decision making. In or-
der to deal with this problem, several methods has been developed, such as the
TOPSIS based on Mahalanobis distance. In this work, we presented preliminar-
ies discussions on a novel approach used to mitigate biased results provided by
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dependent criteria. This approach, called ICA-TOPSIS, comprises the applica-
tion of independent component analysis in order to extract the latent variables
from the observed decision data and, then, the use of the original TOPSIS to
derive the ranking based on the retrieved independent data.

Based on the MCDM scenario considered in this work and the obtained
results, one may remark that the proposed ICA-TOPSIS approach leads to bet-
ter results compared to the methods found in the literature. For instance, our
proposal achieved lower Kendall tau values compared to the TOPSIS based on
Mahalanobis distance, which is used in several works in the literature. A pos-
sible explanation for this result is that the ICA methods exploit the indepen-
dence among criteria, which is stronger than the covariance information used in
TOPSIS based on Mahalanobis distance. Since we consider a MCDM problem
comprised by a mixture of latent variables, our proposal can better mitigate the
biased effect of the criteria dependence.

It is worth mentioning that this work presented initial results on the appli-
cation of ICA-TOPSIS approach to deal with MCDM problems. Future works
comprise a further understanding on this proposal, especially on the latent vari-
able estimation step. Different numbers of criteria and alternatives will also be
considered in new experiments. Moreover, we aim at verifying the performance
of the proposed approach on decision problems based on real data.
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