Skip to main content

Multi-indicator Bacterial Foraging Algorithm with Kriging Model for Many-Objective Optimization

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10941))

Included in the following conference series:

Abstract

In order to efficiently reduce computational expense as well as manage the diversity and convergence in many-objective optimization, this paper proposes a novel multi-indicator bacterial foraging algorithm with Kriging model (K-MBFA) to guide the search process toward the Pareto front. In the proposed algorithm, a set of preferential individuals for the improved Kriging model are appropriately selected according to the different indicators. Specifically, the stochastic ranking technique is adopted to avoid the search biases of different indicators, which would lead the population to converge to local region of the Pareto front. With several test instances from DTLZ sets with 3, 5, 8 and 10 objectives, K-MBFA is verified to be significantly superior to other compared algorithms in terms of inverted generational distance (IGD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong, Y.-J., Chen, W.-N., Zhang, J., Li, Y., Zhang, Q., et al.: Distributed evolutionary algorithms and their models. Appl. Soft Comput. 34(C), 286–300 (2015)

    Article  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm (2001)

    Google Scholar 

  4. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  6. Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_55

    Chapter  Google Scholar 

  7. Chen, H., Niu, B., Ma, L., Su, W.: Bacterial colony foraging optimization. Neurocomputing 137(2), 268–284 (2014)

    Article  Google Scholar 

  8. Ma, L., Cheng, S., Wang, X., Huang, M., Hai, H., He, X.: Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning. Knowledge-Based Systems (2017)

    Google Scholar 

  9. Ma, L., Zhu, Y., Zhang, D., Niu, B.: A hybrid approach to artificial bee colony algorithm. Neural Comput. Appl. 27(2), 387–409 (2016)

    Article  Google Scholar 

  10. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) Parallel Problem Solving from Nature - PPSN VIII, PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  11. Li, M., Yang, S., Liu, X.: Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evol. Comput. 18(3), 348–365 (2014)

    Article  Google Scholar 

  12. Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  13. Rani, R.R., Ramyachitra, D.: Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm. Biosystems 150, 177 (2016)

    Article  Google Scholar 

  14. Mckay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Jeong, S., Minemura, Y., Obayashi, S.: Optimization of combustion chamber for diesel engine using Kriging model. JFST 1, 138–146 (2006)

    Article  Google Scholar 

  16. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 6177021519 and No. 61503373 and supported by Fundamental Research Funds for the Central University (N161705001), Shenzhen Science and Technology Innovation Committee (ZDSYS201703031748284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianbo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Chen, S., Ma, L., Cheng, S., Shi, Y. (2018). Multi-indicator Bacterial Foraging Algorithm with Kriging Model for Many-Objective Optimization. In: Tan, Y., Shi, Y., Tang, Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science(), vol 10941. Springer, Cham. https://doi.org/10.1007/978-3-319-93815-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93815-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93814-1

  • Online ISBN: 978-3-319-93815-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics