UC Berkeley
UC Berkeley Previously Published Works

Title

Communication at Scale in a MOOC Using Predictive Engagement
Analytics

Permalink

https://escholarship.org/uc/item/76k5729m|

ISBN
9783319938424

Authors

Le, Christopher V
Pardos, Zachary A
Meyer, Samuel D

Publication Date
2018

DOI
10.1007/978-3-319-93843-1_18

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/76k5729m
https://escholarship.org/uc/item/76k5729m#author
https://escholarship.org
http://www.cdlib.org/

q

Check for
updates

Communication at Scale in a MOOC Using
Predictive Engagement Analytics

Christopher V. Le, Zachary A. Pardos ™, Samuel D. Meyer,
and Rachel Thorp

University of California at Berkeley, Berkeley, CA 94720, USA
{chrisvle, zp,meyer_samuel, rthorp}@berkeley. edu

Abstract. When teaching at scale in the physical classroom or online class-
room of a MOOC, the scarce resource of personal instructor communication
becomes a differentiating factor between the quality of learning experience
available in smaller classrooms. In this paper, through real-time predictive
modeling of engagement analytics, we augment a MOOC platform with per-
sonalized communication affordances, allowing the instructional staff to direct
communication to learners based on individual predictions of three engagement
analytics. The three model analytics are the current probability of earning a
certificate, of submitting enough materials to pass the class, and of leaving the
class and not returning. We engineer an interactive analytics interface in edX
which is populated with real-time predictive analytics from a backend API
service. The instructor can target messages to, for example, all learners who are
predicted to complete all materials but not pass the class. Our approach utilizes
the state-of-the-art in recurrent neural network classification, evaluated on a
MOOC dataset of 20 courses and deployed in one. We provide evaluation of
these courses, comparing a manual feature engineering approach to an automatic
feature learning approach using neural networks. Our provided code for the
front-end and back-end allows any instructional team to add this personalized
communication dashboard to their edX course granted they have access to the
historical clickstream data from a previous offering of the course, their course’s
daily provided log data, and an external machine to run the model service APL

Keywords: Representation learning - MOOCs - Learning analytics
Engagement * Drop-out prediction - Instructor communication
edX - User-interface

1 Introduction

While related work has investigated what features correlate with MOOC drop-out, this
work pushes in a different direction of allowing instructional staff to operationalize
predictive analytics of engagement in ways that are of pedagogical utility to the learner.
We assert that adding the ability for instructors to send messages to groups of learners
based on their real-time engagement analytics provides a much-needed intermediary
form of communication, in-between the impersonal broadcast announcement and
individual discussion forum posts and replies. To realize this utility, we augment edX,
our MOOC platform of study, with a D3-powered dashboard which displays real-time

© Springer International Publishing AG, part of Springer Nature 2018
C. Penstein Rosé et al. (Eds.): AIED 2018, LNAI 10947, pp. 239-252, 2018.
https://doi.org/10.1007/978-3-319-93843-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_18&domain=pdf

240 C. V. Leetal

engagement analytics produced from a trained model and served by a node.js backend
API. We argue that making predictive models useable in real-world contexts is as
valuable an endeavor for the AIED community as is discovery and data mining with
those models, and therefore consider this implementation component a primary con-
tribution of the work.

If instructors are to use these analytics to determine which learners receive which
communications, it is crucial that the models selected are as accurate as possible. For
this reason, our second contribution, which we devote the first half of the paper to, is on
conducting a comparison of certification (pass) prediction models on 20 edX courses to
establish best practices. This evaluation included (1) various non-neural network
models paired with hand engineered features (2) those same models ensembled
(3) recurrent neural networks paired with hand engineered features, and (4) recurrent
neural networks with features learned automatically from clickstream data. Using the
best performing modeling paradigm from this evaluation, we trained two additional
models predicting learner course completion and learner course drop-out. These two
models, and the certificate model were trained on data from two previous offerings of
our chosen live deployment course, BerkeleyX’s CS169: Software as a Service. With
the three predictive models powering a real-time API backend, we enabled an instructor
only viewable interactive dashboard which is used to compose messages and select
recipients based on selected ranges of the three models’ predictions. For example, an
instructor could send a message linking learners to extra review and remediation
materials if they were predicted to likely stick with the course (not drop out) but were
not predicted to pass.

The outline of the paper begins with related work, followed by the predictive
modeling section, which includes a description of our dataset, methods used, and
results, followed by the edX dashboard (“Communicator’”) engineering section, which
includes a detailed description of the backend service and the analytics user interface.

2 Related Work

Research on predictive modeling relating to drop-out has been a popular focus of study
in MOOC:s, given their typically low pass rate (5% in the first year of MIT and Harvard
edX MOOCs) [1]. Much of this can be attributed to learners simply curious about the
contents of the course or wishing to engage with portions of the course as reference
material; however, a considerable portion of learners remain who intend to pass but do
not [2]. It has been suggested that a subset of learners, such as those in premium tracks
[3], might be a better focus for research seeking to increase achievement, as those
learners’ intentions to achieve are more explicit. However, others have kept a wholistic
approach, attempting to increase engagement among all participants through social
interventions [21]. A simple email, soliciting survey responses from students thought to
have dropped-out, resulted in a mild retention of those students, who rejoined the class
[4]. Very few studies have combined predictive modeling with real-world interventions
in a MOOC. In [20], next resource suggestions were made using a predictive model of
behavior [19]. On residential campuses, predictive models of drop-out have been
operationalized in the form of dispatching counselors for flagged students [18],

Communication at Scale in a MOOC Using Predictive Engagement Analytics 241

an approach which can have unintended side effects of signaling to students that they
are not likely to pass the course, and thus catalyzing a greater rate of drop-out than
without the intervention.

There have been many definitions of how to define drop-out in predictive models;
[5], for instance, included three unique definitions in their analysis. Research in pre-
dicting drop-out using features hand-engineered from the clickstream have used SVMs
[6], logistic regression [7], Hidden Markov Models [8], ensembles of other machine
learning methods [9], and recurrent neural networks (RNN) applied to hand engineered
features [5]. Other work has included information outside the clickstream, such as
forum post data analyzed with natural language processing [10, 17]. Frameworks for
evaluating various models and their feature sets have also been introduced [15, 22].
While most of these studies focused on only a small set of courses, [11, 22] used a
dataset of 20 or more courses to train and predict.

Deep learning, utilizing representation (feature) learning from raw data, has been
applied to the knowledge tracing task [11] and to the sequence prediction task in
MOOCs [12]. The principle intuitions behind the effectiveness of learning features
automatically from raw data has been most saliently established in the task of image
classification; once dominated by more manual feature extraction methods now
eclipsed by Convolutional Neural Networks powered by representation learning [1].

3 Predictive Modeling

3.1 Dataset and Pre-processing

We began with data from 102 edX MOOCs offered in the 2015-2016 school year'. In
our analyses we focused only on instructor-paced courses, leaving the prediction of
engagement analytics for self-paced courses, which involve a greater variety of learner
behavior, for future work. Among the instructor-paced courses, we only considered
those where at least 100 learners earned a certified (Fig. 1). In these data, a certified
learner included both learners who had earned a paid-for certificate and learners who
had earned a passing score in the course but had not paid for an official certificate. To
distinguish which courses were instructor-paced, we checked the archived description
of the course for indications of being self-paced. As an additional check, a course was
considered self-paced if it had only one deadline. This left 21 courses available for use.
One outlier course had three times as many students certified as any other instructor-
paced course and was excluded from training, leaving 20 courses for analysis (Fig. 1).
A total of 13.6 million learner actions were logged in these courses.

Courses came from seven different institutions and varied in length from four
weeks to 19 weeks (Table 1). The longest courses had no more than 10 weeks of
material released, but some instructors kept the course open for more time after the
tenth week. While most courses followed a format of releasing weekly resources and
assigning weekly homework, two courses only had two unique deadlines in the course,

! These data were provided by way of the edX partners’ Research Data Exchange (RDX). All data
have been anonymized before being received and are restricted in use by MOU.

242 C. V. Leetal

while lasting more than 7 weeks each. These descriptive statistics of course structure
give us an idea of how much variation is to be expected when we later train a single
predictive model across many courses.

All Courses . Courses Used

Count
Count
Count

0 10 20 30 40 50 0 500 1000 1500 2000 0 5 10 15 20
Number of Weeks in Course Students Certified Number of Deadlines

Fig. 1. Histogram of number of weeks (left), number of students certified (center) and number
of deadlines in each course (right).

Table 1. Statistical summary of courses used for analysis.

Duration (weeks) | Unique deadlines | Certified students
Min | Median | Max | Min | Median | Max | Min | Median | Max
4 7.7 19 |2 4.5 15 [102 |189.5 [958

In our experiments, we only considered learners who enrolled by the end of the first
week of the course, and we attempted to predict which of those learners would
eventually obtain certification (as defined by passing the course?).

3.2 Methodology

The following subsections describe the process behind building both the feature
engineering approach and the automatic feature (representation) learning model based
on the raw clickstream. Both models were trained to predict the same binary outcome
of the learners eventually passing the course or not. The same set of leaners were used
for training all models including the same course level 5-fold cross-validation; training
on 16 courses and testing on 4 in each cross-validation phase. During the training
portion of each phase, the courses in the training folds were under-sampled to have
only twice as many learners who received certification as those who did not. This was
done to address the dramatic class imbalance in the dataset. During the testing portion
of each phase, the courses in the test fold were predicted in-full, predicting certification
of all learners in the course at every week.

2 A student gained certification if the “status” column in the edX provided
certificates_generatedcertificate-prod-analytics.sql file was set to “downloadable”.

Communication at Scale in a MOOC Using Predictive Engagement Analytics 243

Feature Engineering. We used the standard feature engineering process of taking
clickstream data from MOOC event logs and crafting features which are then used as
inputs in a variety of machine learning predictors.

Within a set time period of one week, various representative values were calculated
to summarize a learner’s behavior. We constructed twelve features, most of which were
taken from a thoroughly-described set of features of a similar experiment by [13], but
with week-by-week comparison features removed — while [13] predicted when a
learner would drop-out, we are focusing on if the learner eventually receives certifi-
cation. To account for the loss of information about how far a learner has progressed
through the course, we included two extra features not included in [13] (see features 6
and 12 in Table 2).

Table 2. Description of all 12 hand-engineered features.

1. Total time® spent on learning resources” 7. Average time difference between
submitting a problem and its respective
deadline

2. Number of distinct problems attempted 8. Duration of the longest-observed learning
event

3. Average number of attempts per problem | 9. Total time spent on video lectures

4. Number of distinct correct problems 10. Standard deviation of duration of learning
events

5. Ratio of total time spent on learning 11. Ratio of number of attempted problems to

resources to number of correct problems number of correct problems

6. Total time since last student action 12. Percent time through a course

“Each non-problem-solving event included a session tag, which identifies continuous periods of
time that a student was online for under a single session id; thus, we estimated the total amount of
time contained within all of these individual sessions and returned the sum of those session times
as a student’s total time spent on learning resources.

Learning resources and learning events include all student events except those related to
solving problems on assignments and/or exams.

Table 3 depicts a single learner (single course) example of the feature set used to
train the models. In the table, it can be observed that the learner’s first week’s actions
are summarized. In the next row, these increase, as the weekly features are additive
from one week to the next. In the row corresponding to the last week of the course
(100% through the course), the learner’s values have not changed from the second
week, indicating the student left the course sometime in week two. All “time spend”
based features are estimates, since the log data do not allow us to know how much of
the time between events was spent focused on the course vs. off-task.

To improve the generalized performance of our classifiers, we normalized each set

f-min(r)
max(F)-min(r)’

Where f'is a single feature value, and F is the corresponding set of all values of that
feature; however, in order to avoid peeking at the test set, we computed each feature’s

of feature values according to: norm(f) =

244 C. V. Leetal

respective maximum and minimum on the training set alone for each cross-validation
fold, and applied these training set based maximum and minimum normalizations to the
test.

Table 3. Example of engineered feature values for one student in a 5-week course before
normalization. The complete training dataset included rows from all courses combined. While
“Learner” is shown as a column for descriptive purposes, it was not a feature in the model.

Learner Percent Avg. attempts ... | Total time spent on Certified
through per problem learning resources (sec)
course
Learner_A 20% 1.5 ... 3,075 0
Learner_A 40% 3.2 ... 120,250 0
Learner_A 100% 3.2 ... 20,250 0

Feature Engineering Models. We ran a variety of models on the hand-engineered
feature values to replicate methods from the state-of-the-art. In addition to training
individual models, we also trained an ensemble [16] which included random forests,
logistic regression, and k-nearest neighbors. We also applied a recurrent neural net
(RNN) using long short-term memory (LSTM) to the hand-engineered features to
compare RNNs learned from raw events (representation learning) to RNNs with hand-
engineered features to evaluate the effect of the type of features vs. the algorithm.

Ensemble Learning. Ensemble learning combines predictions from individual classi-
fiers into a more robust prediction output [14]. To perform our baseline ensemble
learning prediction, we were guided by [9], and our ensemble classifier combined
results from three individual classifiers®: logistic regression, random forest, and k-
nearest neighbors.

The community default hyperparameters of the respective algorithms were used
with two exceptions: (1) the number of estimators in random forest, which we updated
from a default value of 10 to 100 and (2) the number of nearest neighbors k from which
to take the modal classification of a point, from a default value of 5 to 15.

In [9], four different fusing methods were applied and compared. We chose to
implement their most successful method, which was effectively a simple logistic
regression, used to weight the various individual classifiers. In particular, for each
cross-validation iteration, we trained our three individual classifiers on a sub-training
set of 12 courses, and fit ensemble weights on predictions of a 4-course validation
subset, using logistic regression to determine respective weights of each classifier.
Finally, we took a weighted average of the three classifier prediction results on our test
set (4 courses) applying the respective weights determined in the logistic regression
fitting process for a final classification prediction.

3 All implemented using Python’s scikit-learn machine learning library.

Communication at Scale in a MOOC Using Predictive Engagement Analytics 245

Representing Raw Clickstream Data for Automatic Feature Learning. In repre-
sentation learning, features are not manually crafted by experts leveraging their domain
knowledge but are learned by the model from raw data. This approach underlies all
deep learning models and can find abstract relationship between events in a sequence
that may not be apparent to a domain expert or researcher working with data in the
domain. Obscured, however, is the ability to attempt to interpret the importance of
features grounded in domain knowledge. This was a reasonable potential sacrifice for
our work, as it focuses on the operationalization of the predictions and not the
inspection of the models.

All edX courses have a log file that records an event as a JSON entry each time the
user takes an action. Each includes an event_type which is either a descriptive verb
phrase such as video_pause or a URL accessed. The URLs may be a link to a course
resource, or can give information about how a student took an action, such as posting a
comment in the forums. To allow course-general predictions, all URLs with similar
parsed meanings were combined into a single event type. One event, the prob-
lem_check event type, was broken into problem_check_correct and prob-
lem_check_incorrect based on correctness of the answer. This allowed us to
incorporate general assessment performance into the event stream. If an event type
occurred less than 1000 times within the 20 courses, or was not used in more than three
courses, it was not included. This left 78 event types used for the analysis, 21 of which
were types parsed from the URLs. In addition, a week-ending event was added for each
of the first 10 weeks to provide some “mile markers” for the model.

A one-hot encoding of these events was presented as the input at each time step in a
sequence of ordered events for each learner (Fig. 2). Outliers, with event stream lengths
greater than 1.5 IQR above the set of learners within each course who gained certifi-
cation, were not used for training. This excluded about 5% of learners and significantly
reduced model training times.

RNN LSTM Model. A recurrent neural network (RNN) is a sub-class of neural net-
works that has Markovian properties. Much like a Hidden Markov Model (HMM), an
RNN has an input, hidden state, and output per time slice. The hidden state can be
represented as one or several multi-node layers. Also like an HMM, the hidden state
from one time slice is passed as an input to the hidden layer of the next time slice and
the parameters (weights) are shared across time slices.

For a standard RNN, the number of free parameter weights can be calculated by:
[input vector size] X [nodes in hidden layer] + [nodes in hidden layer] x [nodes in
output layer] + [nodes in hidden layer]*. In our case, the input vector size was 88 (# of
unique event types + 10 week_end markers) and the hidden node size was set to 100.
Since our classification is binary, the output was represented with a single node and
sigmoid activation. The number of time slices was dynamic with the longest event
streams rising to 6,909 events for a single learner”. For learners with a shorter event
stream, sequences were zero-padded, and a masking index of 0 was used to tell the
model to ignore those data points during training. During training, drop-out was
applied to 20% of input gates. Training ran for only five epochs due to the computation

“ The longest event streams were in EPFLx “Plasma Physics and Applications”.

246 C. V. Leetal

time required given the size of the data. The output predicts learner certification after
each event, making predictions of greater utility earlier in the course.

3.3 Results

In this section we present the prediction results of each model at each week of
instruction in our 20 selected edX courses. We evaluated all models by calculating a
course-based mean AUC score across the predictions (Fig. 3) and averaging the AUCs
of each course. Some courses only lasted four weeks, so averages for later weeks
include only as many courses as were available for that week. The representation
learning approach performed better than the best feature engineered model up until the
last two weeks. In weeks 5 and 6, the difference between the representation learning
LSTM and the feature engineered LSTM was statistically significant (p < 0.05). The
representation learning LSTM was significantly greater than the logistic regression in
weeks 3 through 8.

certification

label: True True True True
prediction: 0.434 0.397 0.589 0.782
eventtype: seq_next load_video seq_goto week4_end

Fig. 2. RNN model showing event types being input for each time slice for a single user.
Predictions of certification are made at each time slice by the model but only the predictions at
the week_end markers are used in our analysis to serve as the predictions for the respective week.

Among the classifiers used in the ensemble approach, the models from most to leas
successful were; logistic regression (W, = 0.61), random forests (W, = 0.32), and k-
nearest neighbors (Wy,, = 0.07), where the respective mean weights reported are the
normalized weights determined during the logistic regression fitting step of the
ensemble fusing process, averaged across each cross-validation fold.

The representation learning model outperformed all other models throughout the
majority of course weeks, and the amount by which it underperformed in the last two
weeks was not statistically significant.

Communication at Scale in a MOOC Using Predictive Engagement Analytics 247

0.95 4
0.90 4
O
=]
<
0.85 4
—o— Ensemble
k-Nearest Neighbors
—#— Logistic Regression
0.80 4
—— LSTM
—#- LSTM (Representation Learning)
Random Forest
0.754
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Week
204
W
o c
2 154
=
=]
S
S
c 104
—
3]
-]
s .
5 51
Z
04
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Week

Fig. 3. The Area Under Curve (AUC) score for each model (plot above) cross-validated on 20
edX courses along with the number of courses with activity for each week (plot below).

4 Engineering the edX Communicator Interface

The overall objective of the research effort was to surface analytics to instructors with
an interface that allowed for personalized communication based on those analytics.
With predictive modeling best practices empirically established in the previous section,
we moved on to training a predictive model of passing for two of the previous offerings
of our deployment course, BerkeleyX CS169: Software as a Service. In addition to
predicting passing, we trained a model which predicted if a learner would complete the
course, as defined by the student submitting enough materials to possibly pass. We also
trained a third model to predict if the learner would leave and never return within the
next two days. The same representation learning paradigm which performed best at
pass prediction was used for training models of these additional two outcomes. We
chose to add to the base functionality of the edX platform, a lightweight, scalable

248 C. V. Leetal

deployment of an intelligent instructor communication dashboard utilizing the models’
predictions. The interface presented here can be achieved without modification to Open
edX and only requires standard instructional design team/instructor access to edit
course material. The dashboard is added as its own separate course page in its own
sequential in the edX course structure and an option is turned on for this sequential to
be viewable only to instructional staff. A combination of JavaScript and HTML is
inserted into this page from edX studio to produce the interactive dashboard seen in
Fig. 4.
The labeled dashboard components are described below:

(A) The front end allows for the instructor to send communications to a specific
group of learners determined by our D3 tool or to all learners enrolled.

(B) A dropdown list allows the instructor to view or resend past communications.
(C) Pre-sets are included in the pilot that will quickly change the crossfilter to select
a specific group of learners (e.g. learners predicted to complete but not earn a
certificate or learners predicted to leave and not complete).

(D) The crossfilter is a Javascript library> built on top of the D3 visualization library
that displays a histogram of all the predictions for each learner and allows a range of
probabilities to be selected. Selecting a range thereby selects the learners that
pertain to that range. Selecting ranges of multiple analytics selects the learners who
are included in both ranges. An instructor, for example, may want to target learners
between 70% and 100% predicted to earn a certificate with enrichment material
(E) In the email section, the INSTRUCTOR EMAIL is required and will be the
“From: Email” that will appear to learners receiving the email communication.

Within the email section of the front end there is an option to mark the commu-
nication for automatic sending. This option is only available when an instructor is
sending the communication to a specific group of learners utilizing the Analytics
option. With this option enabled, the backend system will check once a day whether
there are new learners that fit the profile of the crossfilter criteria selected. Emails will
be sent to these new learners without sending another communication to students who
have already received it. The Communicator receives anonymous IDs and the three
predictive analytics for each ID from the backend API, described in the next section.

4.1 Engineering the Backend Analytics API

The backend framework depends on two sources of data made available by edX to each
member institution. One source is the daily provided event log for the course being run.
The second source is the weekly provided roster information for the course, which
includes email contact information for all enrolled learners. Every day, the predictions
are refreshed given the newly added clickstream data. A typical workflow is as follows
(Fig. 5):

5 http://square.github.io/crossfilter/.

http://square.github.io/crossfilter/

Communication at Scale in a MOOC Using Predictive Engagement Analytics 249

BerheleyX: (5169.1x Agile Development Using Ruby on Ralls - The Basics. Help i
@iX viewthis courseas: Sttt B
Cowse Discusson WK Progress Online Resources and Courseware info Sylabus Chat Pair Programmingon At Accessibiity
Instructor
Course > Getting Started (Week -1) > Getting Set Up With Software For The Class > Instructor Analytics
< Previous @] Next >
Instructor Analytics VIEW UNITINSTUDO
RBookmark this page

Communicator

Select recipients by:
O Analytics All Learners

Load Past Communications §

Analytics pre-sets to try

©@@®

Completion % chance reset

-
¢ o 1) ®) % %) ® ® w
Attrition % chance
g %) ® z % 3 ® 1) ® %
Certification % chance reset
¢ o ' » o » w » © ® w

26 (2%) of 1,392 learners seiected

Compose Email

Recipients: 26 Leamers

nstructor

From

check for and send to new matches found daily

Please check the maximum daily recipient limit of your email provider. For example, Gmail is 500 per day.

sasFDEsuG o __ |

< Previous Next >

Fig. 4. Interactive “Communicator” dashboard for composing instructor authored directed
emails to learners based on their real-time engagement analytics.

250 C. V. Leetal

EMAIL SERVICE - § X
e Server sends the predictions file to the client

© Client sends email p to server for ication

SERVER CLIENT

& ®

S
’.-.- e EdX provides a daily incremental event log for the past 24 hours

.' ® EdX provides a weekly roster that is updated every Sunday

Fig. 5. Backend framework components powering the communicator dashboard

1. The instructor accesses the edX Communicator dashboard and receives the real-
time learner analytics from the backend, displayed via three interactive crossfilters.

2. After the instructor selects a specific group of learners using the crossfilter views
and fills out the Compose Email form, the backend receives a request to send email
to the selected learners.

3. The server receives the data and sends off the emails. A mail provider with bulk
messaging capabilities is needed for this step.

4. The communication data (email message and selection criteria) are stored on the
server in case the instructor would like to re-send or modify communications from
the current course or save communications for use in future offerings of the course.

The body of the message field has the ability to fill in the learner’s first or full name
using the following markup: “[:fullname:]” or “[:firstname:]” This information is pulled
from the weekly roster provided by edX. All communication is over SSL, with no
identifiable data being passed over this communication channel to the front-end.

5 Contributions

We enabled the utilization of predictive models of engagement by instructors for the
purpose of personalized communication by engineering a communications interface
into the edX platform complete with a backend model API. Using a dataset of 20 edX
courses, we compared a variety of modeling approaches, with representation learning
using RNNs as the best performing, to ensure that a competent model would be
selected for this task. Our prediction findings showed that it is not simply the use of a
deep learning model, such as an RNN, that is responsible for improved performance,
but rather the combination of this type of modeling technique with the ability to
machine learn features from raw clickstream data. Additional hand-engineered features

Communication at Scale in a MOOC Using Predictive Engagement Analytics 251

would likely increase prediction accuracy; however, this would require additional
domain knowledge and may not be worth the additional effort in a context where it is
the predictive analytics that are the end goal, and not knowledge discovery through
model interpretation. Our open-source® Communicator interface and backend API
makes predictive models actionable in the real-world setting of edX MOOCs and opens
the door to researchers in the field to explore other types of personalized communi-
cation parameters and interventions. Such parameters could include messaging based
on common wrong answers given on a question, scores on an assessment or collection
of assessments, or other inputs (e.g. surveys) and predictive model outputs.

Acknowledgements. These multi-institution analyses were made possible by anonymized data
from the edX partners’ Research Data Exchange (RDX) program. This work was supported in
part by a grant from the National Science Foundation (Award #1446641).

References

1. Krizhevsky, A., Sutskever, 1., Hinton, G.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097-1105
(2012)

2. Ho, A., Reich, J., Nesterko, S., Seaton, D., Mullaney, T., Waldo, J., Chuang, 1.: HarvardX
and MITx: The first year of open online courses, fall 2012-summer 2013 (2014)

3. Reich, J.: MOOC completion and retention in the context of student intent. EDUCAUSE
Review Online (2014)

4. Mass, A., Heather, C., Do, C., Brandman, R., Koller, D., Ng, A.: Offering verified
credentials in massive open online courses. In: Ubiquity Symposium (2014)

5. Mj, F., Yeung, D.: Temporal models for predicting student drop-out in massive open online
courses. In: 2015 IEEE International Conference Data Mining Workshop ICDMW) (2015)

6. Kloft, M., Stiehler, F., Zheng, Z., Pinkwart, N.: Predicting MOOC drop-out over weeks
using machine learning methods. In: Proceedings of the EMNLP 2014 Workshop on
Analysis of Large Scale Social Interaction in MOOCs (2014)

7. Jiang, S., Williams, A., Schenke, K., Warschauer, M., O’dowd, D.: Predicting MOOC
performance with week 1 behavior. In: Educational Data Mining 2014 (2014)

8. Balakrishnan, G., Coetzee, D.: Predicting student retention in massive open online courses
using hidden markov models (2013)

9. Boyer, S., Veeramachaneni, K.: Robust predictive models on moocs: transferring knowledge
across courses. In: Proceedings of the 9th International Conference on Educational Data
Mining (2016)

10. Crossley, S., Paquette, L., Dascalu, M., McNamara, D., Baker, R.: Combining click-stream
data with NLP tools to better understand MOOC completion. In: Proceedings of the Sixth
International Conference on Learning Analytics & Knowledge (2016)

11. Kizilcec, R., Halawa, S.: Attrition and achievement gaps in online learning. In: Proceedings
of the Second ACM Conference on Learning@ Scale (2015)

12. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., Sohl-Dickstein, J.:
Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505—
513 (2015)

S https://github.com/CAHLR/Communicator.

https://github.com/CAHLR/Communicator

252

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. V. Leetal

Tang, S., Peterson, J., Pardos, Z.: Modelling student behavior using granular large scale
action data from a MOOC. arXiv:1608.04789 (2016)

Whitehill, J., Williams, J., Lopez, C.C., Reich, J.: Beyond prediction: toward automatic
intervention to reduce mooc student stopout. In: Educational Data Mining (2015)

Boyer, S., Gelman, B., Schreck, B., Veeramachaneni, K.: Data science foundry for MOOCs.
In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), 36678
2015 (2015)

Pardos, Z.A., Gowda, S., Baker, R., Heffernan, N.: The sum is greater than the parts:
ensembling models of student knowledge in educational software. ACM SIGKDD Explor.
Newlett. 12(2), 37-44 (2012)

Wise, A., Cui, Y., Vytasek, J.: Bringing order to chaos in MOOC discussion forums with
content-related thread identification. In: Proceedings of the Sixth International Conference
on Learning Analytics & Knowledge (2016)

Jayaprakash, S.M., Moody, E.W., Lauria, E.J., Regan, J.R., Baron, J.D.: Early alert of
academically at-risk students: an open source analytics initiative. J. Learn. Analytics 1(1), 6—
47 (2014)

Tang, S., Peterson, J., Pardos, Z.: Predictive modelling of student behaviour using granular
large-scale action data. In: Lang, C., Siemens, G., Wise, A.F., Gaevic, D. (eds.) The
Handbook of Learning Analytics, 1st edn., pp. 223-233. Society for Learning Analytics
Research (SoLAR), Alberta (2017)

Pardos, Z.A., Tang, S., Davis, D., Le. C.V.: Enabling real-time adaptivity in MOOCSs with a
personalized next-step recommendation framework. In: Proceedings of the Fourth ACM
Conference on Learning @ Scale (L@S). Cambridge, MA. pp. 23-32. ACM (2017)
Ferschke, O., Yang, D., Tomar, G., Rosé¢, C.P.: Positive impact of collaborative chat
participation in an edX MOOC. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.
Felisa (eds.) AIED 2015. LNCS (LNAI), vol. 9112, pp. 115-124. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19773-9_12

Andres, J.M.L., Baker, R.S., Siemens, G., Spann, C.A., Gasevic, D., Crossley, S.:
Studying MOOC completion at scale using the MOOC replication framework. In:
Proceedings of the 10th International Conference on Educational Data Mining, pp. 338—
339 (2017)

http://arxiv.org/abs/1608.04789
http://dx.doi.org/10.1007/978-3-319-19773-9_12

	Communication at Scale in a MOOC Using Predictive Engagement Analytics
	Abstract
	1 Introduction
	2 Related Work
	3 Predictive Modeling
	3.1 Dataset and Pre-processing
	3.2 Methodology
	3.3 Results

	4 Engineering the edX Communicator Interface
	4.1 Engineering the Backend Analytics API

	5 Contributions
	Acknowledgements
	References

