
TipsC: Tips and Corrections for programming
MOOCs

Saksham Sharma, Pallav Agarwal, Parv Mor, and Amey Karkare

Indian Institute of Technology, Kanpur
{sakshams, pallavag, parv, karkare}@cse.iitk.ac.in

Abstract. With the widespread adoption of MOOCs in academic insti-
tutions, it has become imperative to come up with better techniques to
solve the tutoring and grading problems posed by programming courses.
Programming being the new ‘writing’, it becomes a challenge to ensure
that a large section of the society is exposed to programming. Due to the
gradient in learning abilities of students, the course instructor must en-
sure that everyone can cope up with the material, and receive adequate
help in completing assignments while learning along the way.
We introduce TipsC for this task. By analyzing a large number of correct
submissions, TipsC can search for correct codes resembling a given in-
correct solution. Without revealing the actual code, TipsC then suggests
changes in the incorrect code to help the student fix logical runtime er-
rors. In addition, this also serves as a cluster visualization tool for the
instructor, revealing different patterns in user submissions.
We evaluated the effectiveness of TipsC’s clustering algorithm on data
collected from previous offerings of an introductory programming course
conducted at IIT Kanpur where the grades were given by human TAs.
The results show the weighted average variance of marks for clusters
when similar submissions are grouped together is 47% less compared to
the case when all programs are grouped together.

Keywords: Intelligent Tutoring System ·Automated Program Analysis ·MOOC
· Clustering · Program Correction

1 Introduction

With Massively Open Online Courses (MOOCs) being widely adopted among
academic institutions and online platforms alike, the number of students study-
ing programming through such courses has sky-rocketed. In contrast, the avail-
ability of personalized help through Teaching Assistants (TAs) can not scale
accordingly due to human limitations.

The challenge in this scenario is two-fold. Firstly, TAs have to manually grade
a large number of incorrect submissions for partial grades, and this process is
prone to a large bias and variance as we discovered through collected data [17].
Secondly, helping students stuck at a problem (by providing relevant tips and
suggestions) is simply not tractable for MOOCs due to the scale involved.

ar
X

iv
:1

80
4.

00
37

3v
1

 [
cs

.A
I]

 2
 A

pr
 2

01
8

int main() {

int n; float f;

scanf("%d %f", &n, &f);

if (n%5==0 && (n+.5)<=f && f<=2000)

printf("%0.2f", f-n-.5);

else

printf("%0.2f", f);

}

int main() {

float y; int x;

scanf("%d %f", &x, &y);

if ((x%5==0) && (x+0.5)<=y)

printf("%0.2f", y-x-.50);

else

printf("%0.2f", y);

}

Fig. 1. Two programs with a small logical difference.
Source: codechef.com/problems/HS08TEST.

We introduce TipsC, a tool to parse, analyze, and cluster programming
MOOC submissions, in order to tackle the above challenges.

Motivational Example

Consider the two submissions in an offering of a programming course as shown
in Fig 1. It would be ideal if the author of the second program could be informed
about the missing bound check, once the author has tried enough. Using a large
number of submissions available for each problem, TipsC finds programs similar
to the incorrect one, and suggests granular changes.

The algorithm to find similar submissions allows TipsC to cluster the pro-
grams together. This aids in manual analysis, allowing instructors and TAs to
obtain a bird’s-eye view of the spectrum of solutions received from the students
and also helps in creating customized feedback and grading rubrics for individual
clusters.

Our Contributions

TipsC solves a very practical use-case, which has not been explored enough in
the past. The contributions of this paper are:

1. A technique to normalize C program Abstract Syntax Trees (ASTs) to a
linear representation, with an intention to make them amenable to similarity
analysis. This includes various approximations and domain-specific heuristics.

2. An edit distance metric for normalized programs, which is a set of specialized
modifications upon Levenshtein distance for two lists.

3. We demonstrate the effectiveness of our distance metric by clustering similar
programs (distance within a certain threshold) together and comparing the
variance in marks awarded by TAs within a cluster.

4. An open source tool, TipsC, which implements the above ideas in the context
of a MOOC teaching the C language.

2 TipsC

TipsC, implemented in Scala, can be plugged into a MOOC to realize the con-
tributions mentioned above. The primary motivation behind the working of the

software is the fact that most introductory programming assignments have a
finite number of solution variants, with minor variations in between them. We
assume that a student’s solution would often resemble some previously existing
solution(s). TipsC attempts to find programs which are similar to a user’s at-
tempt. It can then suggest changes to the user’s program, which would involve
fixing small logical runtime errors.

The software offers a command line interface (CLI), as well as a web interface,
with an intersecting set of functionality available. It is intended to be run as
a web service behind the scenes, in a MOOC. The CLI’s purpose is to allow
experimenting with program similarity metrics, and for producing illustrative
figures to aid in visualization of the data.

Workflow

1. TipsC accepts C language programs as input, which it parses using an inbuilt
parser. Relevant features are extracted from the parsed result, and the pro-
gram is normalized and converted to a linear representation (Sections 3.1 and
3.1). All this information is serialized and stored in a database.

2. On every valid program insert request, edit distances (Section 3.2) between
that program and all existing submissions (for that particular question) are
computed, using the method described in Section 3.3.

3. Periodically, the distance matrix is consumed by a script which creates clus-
ters out of the provided programs (Section 3.4). Such clusters are formed for
each active problem in the MOOC. The number of clusters is ensured to be
sub-polynomial in n.

4. TipsC provides an endpoint which accepts a valid C program, which is then
linearized and normalized. Edit distance is computed between the input pro-
gram and representative elements from our clusters, and then to each element
of the closest clusters, which allows us to select the closest programs to our
input program.

5. The edit distance metric discussed in Section 3.2 also returns a ‘patch’ to
convert the normalized programs into each other. Thus, knowing the closest
programs allows TipsC to provide personalized tips for the problem to the
user. Of course, such tips must be filtered appropriately in order to prevent
leaking solutions. This is discussed in section 4.

3 Algorithms

In this section, we provide details on the various algorithms used by the workflow
in Section 2. The programs submitted by the students, can not be compared as
is. To use our variation of the Levenshtein distance algorithm, we first normalize
all the programs (into a linear form) by a series of transformations on the ob-
tained AST of the program. After this, our metric for comparing programs, and
our clustering technique, together allow TipsC to efficiently suggest changes in
programs, as discussed above.

3.1 Program normalization

We now describe various stages of program normalization.

Linearization The program is first converted to a linear representation, rather
than one with nested constructs. This is done to aid in the comparison step. For
example, an if-else construct would be converted to:
IF(condition) BLOCK START...BLOCK END ELSE BLOCK START...BLOCK END.
Ideally, each statement would translate to one or more tokens in the linear form.

Construct Normalization Since there are multiple loop constructs, they are
replaced with the closest approximation of a single LOOP construct. For in-
stance, a for loop may be split into an assignment, a while loop, and a update
operation at the end of the while block. "for(expr1; cond1; expr2) BLOCK"

becomes "expr1; loop(cond2); (BLOCK + expr2);") This allows for a better
similarity measure between two programs. Similarly, other semantically similar
constructs could be handled (for instance, renaming var++ to var=var+1).

Expression Linearization Just like the flow graph, we also need a linear
representation of the expressions. For our purposes, we use the postfix notation
for the expression linearization.

Expression normalization Since different students use different variable names,
we rename the variables in the expression to generic names, based on their order
of use within that expression. For instance, the expression (a + b/a) after nor-
malization would become: (var1+var2/var1). Or, in postfix: var1 var2 var1 / +

3.2 Edit distance

After the linearization of the program, we use a variation of the Levenshtein
edit distance algorithm to find the similarity between two programs. The edit
distance algorithm is run on the linear representation of the programs, with
each logical line of code considered as one token. We assign a constant value
(Wad) for additions and deletions, and a maximum value for (Wr = Wad/2) for
replacements of most constructs.

Since it is not enough to compare just the equality of two statements/expressions,
a granular edit cost is computed when the tokens being compared are both ex-
pressions. The edit cost inside the expressions is computed in exactly the same
manner as the rest of the program (Levenshtein). Later, the edit cost when com-
paring expressions is normalized by the size of the expression and finally scaled
to Wr, where an edit cost of Wr implies completely different expressions.

A simplified pseudocode of the algorithm is given in Fig 2.
In addition to the above, we intentionally penalize addition or deletion of

BLOCK OPEN and BLOCK CLOSE constructs with thrice the usual penalty, so that
the matching algorithm tries to align blocks with each other, wherever possible.

func EditModule(list1, list2: List[Item]):

let head1, head2 = head(list1), head(list2)

if head1 == head2:

return EditModule(tail(list1), tail(list2))

normalized_dist = 10

if type(head1) == Expr && type(head2) == Expr:

partial_distance = EditModule(head1, head2)

normalized_dist = normalize(partial_distance, head1, head2)

distance1 = 20 + EditModule(list1, tail(list2))

distance2 = 20 + EditModule(tail(list1), list2)

distance3 = normalized_dist + EditModule(tail(list1), tail(list2))

return min(distance1, distance2, distance3)

Fig. 2. Pseudo-code for edit distance algorithm

int func1() {

int r = func2();

return func4(r);

}

int func2() { return func3(); }

int func3() { return 2; }

int func4(int r) { return r-2; }

int main() { return func1(); }

Fig. 3. Depth-First traversal: main → func1 → func2 → func3 → func4

This modification should make the suggestions much more meaningful since now
loops and conditionals would be matched to corresponding constructs with a
higher likelihood. This is because a higher penalty for block anchors incentivizes
matching-up blocks between the codes.

3.3 Comparing Two Programs

TipsC uses a modified edit distance algorithm (Section 3.2) to compare nor-
malized programs. This, alone, is not enough to capture the variations seen in
programs. This is because naively detecting homomorphic reordering of state-
ments (reordering content across functions or changing function order) would
make the comparison algorithm very inefficient. We solve this issue by compar-
ing each function separately.

if (0)

helper1();

else

helper2();

if (1)

helper2();

else

helper1();

Fig. 4. Example where first-use-based ordering does not work

func PairUpFunctions(fxns1, fxns2: List[Function]):

let result = []

for permu in permutations(fxns2):

pairs = zip/pair up functions in fxns1, permu in order

leftOut1 = remaining (unpaired) functions in fxns1 if any

leftOut2 = remaining (unpaired) functions in permu if any

leftOutLines = sum of length of tokens in leftOut functions

leftOutPenalty = leftOutLines * scalingFactor1

orderingPenalty = (fraction of functions in permu which are not

in their use-order position) * scalingFactor2

add (pairs, leftOutPenalty + orderingPenalty) to result

return result

Fig. 5. Pseudo-code for function pairing algorithm

Each function is represented as a list of tokens, and a program is represented
as a list of function representations. In addition, we do a Depth-First-Traversal
on expressions in the ‘main’ function, to reorder all the functions in the program
in the order they are first called. Such a traversal also removes any unused func-
tions from the analysis. It is easy to imagine how introductory programming
assignments could involve multiple functions which call each other, and how
ordering them in first-use-order would compensate for the many possible ways
students could choose to order their functions. An example of such a traversal
is shown in Fig 3.
There are still two scenarios remaining. A user could choose to write a singleton

‘main’ function, which calls another helper function for the main logic. Another
scenario where the first-use-ordering would be incorrect is shown in Fig 4.
Both these scenarios are taken care of by our algorithm, shown in Fig 5. The al-

gorithm considers all permutations of the functions, assigning appropriate penal-
ties in case the ordering is different or if some functions could not be matched.
Note that this pairing algorithm is exponential in the number of functions present
in the programs. Yet, it is practical since we do not expect more than a handful
of functions in an introductory course. Even in cases where a large number of
functions are expected in a program, the implementation of the algorithm can
be forced to time out after a threshold.

3.4 Clustering programs

Since the distances obtained from the algorithm in Section 3.2 do not follow
triangle inequality, we cannot map the programs onto a vector space that accu-

func DoCluster(rootNode: Node):

if rootNode is None:

return

else if rootNode.dist > thresholdDist

|| rootNode.count >= 2 * thresholdCount:

DoCluster(rootNode.left) && DoCluster(rootNode.right)

else if rootNode.left is None || rootNode.right is None:

DoCluster(rootNode.left) && DoCluster(rootNode.right)

else if rootNode.count <= thresholdCount:

MakeNewCluster(rootNode)

else:

DoCluster(rootNode.left) && DoCluster(rootNode.right)

Fig. 6. Pseudo-code for creating hierarchical clusters

rately captures their distance matrix. Instead we use hierarchical/agglomerative
clustering [15] which does not require assertion of the inequality. We perform
clustering using the following four different linking criteria, which are: single,
complete, average and weighted.

For each of these methods, we calculate cophenetic correlation coefficient [3]
and select the linkage method which maximizes the coefficient. Based on this
method we generate the hierarchical tree and create clusters using the algorithm
in Fig 6. We define thresholdCount to be b

√
nc, where n is the number of pro-

grams and thresholdDist is the distance only below which creation of clusters
will be allowed to filter out the outliers.

3.5 Finding representative elements of clusters

In TipsC, the concept of representative elements is introduced to avoid com-
puting distance with all the programs in the database with the input program.
Clustering the tree using algorithm in Fig 6 ensures that we have Ω(

√
n) clusters

with each cluster having O(
√
n) elements. As a result to find the nearest pro-

gram we compare the input program first with representative elements of each
of the Ω(

√
n) clusters. Then filter out on the second level with every element of

the starting best clusters.
To find out the representative element of a cluster we the take the program from
it which gives the least root mean square error with all elements of the cluster.

4 Usage in a MOOC environment

TipsC approach is particularly suited for a programming MOOC. MOOCs usu-
ally allow a few days of time for solution submission. Students may start at-
tempting the problem early on, which would ensure that a large number of
correct solutions populate the database in some time. Students having difficulty
with the problem may be unable to submit a correct solution in time, since
they may find themselves stuck on minor errors. When a particular amount of

time has passed, the instructor may choose to activate TipsC, which would al-
low slower students to get hints using the already processed correct solutions.
The instructor may choose to penalize all submissions after that particular time,
which is a standard practice in many university courses even without TipsC.

The above approach would ensure that students do not stay stuck at a par-
ticular problem and give up, but rather can take advantage of automated and
personalized hints to proceed further in their assignments, thus hopefully low-
ering the drop-out rate. Also, since this algorithm can potentially scale to very
large courses, this would also reduce the number of TAs required for MOOCs.

There is a fine line between helping and spoon-feeding, and TipsC tries its
best not to cross it. The suggestions provided by TipsC are not plug-and-play,
but are rather hints. The difference between programs is on a processed version
of the program and does not contain exact variable names or even syntax. For
example, a user may notice that there is a missing conditional check, which
may bring their attention to that part of the code, but they would not see an
already complete solution. They would also not be shown large differences, thus
preventing a leak of program logic or structure.

5 Implementation and Scaling

TipsC is an open source software, released under the Apache 2.0 License, on
GitHub.1. The major implementation is in Scala, using the Akka framework
for the backend. The clustering algorithm used is implemented in SciPy and is
run using Python scripts. A web playground has been deployed publicly, which
allows users to see the algorithm live in action on different problems.2

The performance was tested on a Linux desktop running OpenJDK8, with
16 GB RAM, and an Intel(R) Core(TM) i7-4470 CPU @ 3.40GHz with 4 cores.

Program Addition This entails a simple addition into the database, fetching
the distance matrix for the background distance update job, and starting the
background jobs. Thus, there is no noticeable time required for this step.

Updating the Distance Matrix For every new program addition, distances
with existing programs must be computed. Requests are handled sequentially
to avoid race conditions. If the database has n programs, then this part of the
algorithm takes O(n) time to compute the distance for each of those programs.

This step is only run for correct submissions. This is bounded by the number
of students enrolled in the course, and thus would be quite infrequent. Yet, this
step is amenable to parallelization. This makes its performance very practical
for MOOCs, as is shown in Fig 7(a)

1 The source code is available at https://github.com/HexFlow/tipsy
2 The web playground for TipsC is deployed at http://tipsy.hexflow.in

https://github.com/HexFlow/tipsy
http://tipsy.hexflow.in

(a) Distance Matrix Update (b) Cluster Update

Fig. 7. Performance on an average of 50 lines of code per program. The x-axis denotes
the number of already submitted programs. Y-axis denotes the time taken in seconds
to update the data structures on adding a new program.

Updating Clusters This part of the algorithm is not run frequently, since it
only provides more programs to be matched against, for correction fetching. This
part is fast enough on practical database sizes, but it scales as O(n2). This is
not a major overhead, as is shown in Fig 7(b)

Providing Corrections Corrections are served by matching against represen-
tative elements of each cluster, and later by comparing against all elements of
4 best clusters. Since the number of programs in a cluster is bounded (See Sec-
tion 3.4), and the number of clusters is expected to be small. The worst case is
still O(n) where all submissions are very far away from each other. This scenario
is expected to be very rare for usual introductory problems of programming. On
real data, from the Introduction to Programming course at IIT Kanpur, we see
30-40 clusters among 100 submissions for each problem, around 20-30 of which
are singleton clusters of outliers. These numbers are from Week 3 and Week 4
problems, which contain simple recursion problems, multiple nesting loops, and
conditionals, among other things.
In the scenario described above, requests for fetching corrections for non-trivial
codes (35-45 lines of code) take 0.6-0.8 seconds end-to-end. This is expected
to scale slowly with the number of programs in the database and thus is quite
feasible for MOOCs. The major overhead is due to the comparison with repre-
sentative elements of each cluster, and this task can be made faster with more
parallelism.

6 Experiments

TipsC was run on data from previous iterations of the Introduction to Program-
ming course at the authors’ institute. Some observed trends are described in
Fig 8, Fig 9 and Table 1.

Fig. 8. Dendrogram from the clustering algorithm. X-axis represents unique programs.

Clustering followed by manual inspection of the clusters revealed some incon-
sistency in manual grading by TAs (among partially correct submissions). We
inspected the variance of marks in each non-trivial cluster, which was often low
(since many submissions got full marks). On inspecting clusters with high marks
variance, we noticed programs with minor differences, but with disparate marks.
Clustering on 85 submissions to a fairly advanced problem containing loops, con-
ditionals and arrays, yielded a small number of interrelated clusters, as verified
by manual inspection (Fig 8)

To compare the effectiveness of the clustering by TipsC, we computed the
variance of marks in each cluster for several problems as shown in Table 1 (Prob-
lem ID is a unique ID given to each assignment for the course). The results show
that variance within a cluster is much less (47% less on average) than when all
the submissions are considered together. This suggests that TipsC is indeed able
to group similar programs together, a fact that can help in effective grading by
assigning similar programs to the same TA.

TipsC also generates force-layout based images for visualization purposes of
the submissions. Figure 9 shows an example, when run on 100 submissions to a
problem requiring solutions with 4-5 nested loops and conditionals. It also helps
pinpoint outliers, which can be inspected manually by the instructor later.

Problem ID # submissions Variance (overall) Average cluster variance

Lab3-1633 84 1.54 0.78

Lab4-1822 68 2.15 0.70

Lab6-2012 64 3.33 1.97

Lab8-2289 68 1.92 1.30

Exam1-1938 69 6.93 3.74

Table 1. Comparison of variance of marks with and without clustering

Fig. 9. Force-graph visualization of submissions to a problem

7 Related Work

Automated repair and feedback generation for introductory programming courses
is attracting plenty of attention in recent years due to plethora of online courses
available on MOOC platforms, and due to growing number of students in tra-
ditional classrooms. The repair or feedback can be produced at two different
stages for student programs: (a) when a student is struggling to fix compile time
errors, and (b) when the program is running, but the student is unable to match
the behavior expected by the instructor (typically specified through unit tests).

TRACER [1] learns fixes for compile time errors from existing code submis-
sions (possibly for a different problem statement) and performs targeted repair.
The learning is performed by comparing an erroneous version and a later error-
free version of the same program. Other methods [8,2,20] learn repairs by ob-
serving a large corpus of correct programs to learn possible correct sequences of
tokens. HelpMeOut [9] generates feedback for compilation error by maintaining
a database of errors encountered by other students. In case of a compiler error,
it provides both the erroneous line of the other student, as well as the modified
line which resulted in successful compilation as a hint. GradeIT [17] uses sim-
ple rewrite rules to repair common compilation errors. Their study show that
even these simple repairs can be effective for feedback generation and automated
grading of assignments.

The Software Engineering community has developed a number of Auto-
mated program repair (APR)3 tools (GenProg [12], AE [25], Angelix [14], and
Prophet [13] to name a few) that automatically fix software bugs. These tools
have been shown to fix the bugs of large real-world software effectively. However,
a recent study [26] has concluded that these repairs are not directly suitable to be

3 http://program-repair.org/

http://program-repair.org/

used as hints for novice students programmers. On the other hand, they can be
an effective aid for improving grading by teaching assistants (typically student
programmers with few years of experience).

REFAZER [24] uses program synthesis, particularly programming-by-example
technique, to synthesize syntactic program transformations to fix logical errors
in the program. It uses a corpus of code edits made by students to fix incorrect
programs to generate transformers that can be used later on similar incorrect
programs submitted by other students. Other approaches [22,21,23,19] use refer-
ence solution(s) from the instructor and correct/incorrect programs from other
students to construct a solution space containing the different states (correct
and incorrect) that students have created. Then, a path from an incorrect state
to some nearest correct state is used to generate hints.

Another common approach to feedback generation is clustering where stu-
dents submissions having similar features are grouped together in clusters. The
clusters are created either by using a fixed set of rules or by using machine
learning techniques [16,18,5] or by using techniques based on program analy-
sis [6,7,11,4,10]. The feedback is typically generated manually for a representa-
tive program in each cluster, and it is customized to other members of the cluster
automatically. Our tool TipsC belongs to the category of rule-based clustering
tools. However, it differs significantly from others in the use of linearized ASTs
that are amenable to efficient distance computation between two programs. Com-
parisons with TA marks show that these distances can be used as a measure of
correctness for these programs.

8 Conclusion and Future Work

In this paper, we have described TipsC in the context of programming and
logical error corrections. It is a scalable system, which can be plugged into any
existing MOOC, to allow aiding students who are having difficulty in the course
without any manual intervention. The system requires a very reasonable number
of submissions to become practical, and can easily be modified to handle many
other programming languages as well. It works in a fully automated manner and
does not require any special effort to accommodate different problems.

We plan to deploy TipsC in an offering of the Introduction to Programming
course at our institution, and conduct user surveys to evaluate its usefulness.
We believe that TipsC rules can be easily mapped to create helpful feedback
messages and rubrics to grade programs with minimum human intervention.
Also, some lightweight semantic analysis, and inlining of non-recursive functions,
can be used to improve the similarity matrix. We plan to implement these in a
future iteration of the software. Use of TipsC as a plagiarism detector can also
be explored.

References

1. Ahmed, U.Z., Kumar, P., Karkare, A., Kar, P., Gulwani, S.: Compilation error
repair: For the student programs, from the student programs. In: ICSE-SEET ’18.
(2017) 13–22

2. Bhatia, S., Singh, R.: Automated Correction for Syntax Errors in Programming
Assignments using Recurrent Neural Networks. arXiv:1603.06129 [cs.PL] (2016)

3. Farris, J.S.: On the cophenetic correlation coefficient. Systematic Zoology 18(3)
(1969) 279–285

4. Glassman, E.L., Scott, J., Singh, R., Guo, P.J., Miller, R.C.: Overcode: Visualizing
variation in student solutions to programming problems at scale. ACM Trans.
Comput.-Hum. Interact. 22(2) (2015) 7:1–7:35

5. Gross, S., Zhu, X., Hammer, B., Pinkwart, N.: Cluster based feedback provi-
sion strategies in intelligent tutoring systems. In Cerri, S.A., Clancey, W.J., Pa-
padourakis, G., Panourgia, K., eds.: ITS ’12. (2012)

6. Gulwani, S., Radicek, I., Zuleger, F.: Feedback generation for performance prob-
lems in introductory programming assignments. In: FSE ’14. (2014) 41–51

7. Gulwani, S., Radicek, I., Zuleger, F.: Automated clustering and program repair
for introductory programming assignments. CoRR abs/1603.03165 (2016)

8. Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: Fixing Common C Language
Errors by Deep Learning. In: Proceedings of the 31st AAAI Conference on Artificial
Intelligence (AAAI). (2017)

9. Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S.R.: What Would Other
Programmers Do? Suggesting Solutions to Error Messages. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ACM (2010)
1019–1028

10. Head, A., Glassman, E., Soares, G., Suzuki, R., Figueredo, L., D’Antoni, L., Hart-
mann, B.: Writing reusable code feedback at scale with mixed-initiative program
synthesis. In: L@S ’17. (2017)

11. Kaleeswaran, S., Santhiar, A., Kanade, A., Gulwani, S.: Semi-supervised verified
feedback generation. In: FSE ’16. (2016) 739–750

12. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method
for automatic software repair. IEEE Transactions on Software Engineering 38(1)
(Jan 2012) 54–72

13. Long, F., Rinard, M.: Automatic Patch Generation by Learning Correct Code. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL). (2016) 298–312

14. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: ICSE. (2016) 691–701

15. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms.
The Computer Journal 26(4) (1983) 354–359

16. Nguyen, A., Piech, C., Huang, J., Guibas, L.J.: Codewebs: scalable homework
search for massive open online programming courses. In: WWW ’14. (2014) 491–
502

17. Parihar, S., Dadachanji, Z., Singh, P.K., Das, R., Karkare, A., Bhattacharya, A.:
Automatic grading and feedback using program repair for introductory program-
ming courses. In: ITiCSE ’17. (2017) 92–97

18. Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., Guibas, L.:
Learning program embeddings to propagate feedback on student code. In: ICML
’15. (2015) 1093–1102

19. Price, T.W., Dong, Y., Barnes, T.: Generating data-driven hints for open-ended
programming. In: EDM ’16. (2016) 191–198

20. Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R.: Sk P: A Neural Program
Corrector for MOOCs. In: Companion Proceedings of the 2016 ACM SIGPLAN
International Conference on Systems, Programming, Languages and Applications:
Software for Humanity. SPLASH Companion 2016, New York, NY, USA, ACM
(2016) 39–40

21. Rivers, K., Koedinger, K.R.: Automatic generation of programming feedback; A
data-driven approach. In: Proceedings of the Workshops at AIED ’13. (2013)

22. Rivers, K., Koedinger, K.R.: Automating hint generation with solution space path
construction. In: ITS ’14. (2014) 329–339

23. Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces: a
self-improving python programming tutor. I. J. Artificial Intelligence in Education
27(1) (2017) 37–64

24. Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani, S., Gheyi, R., Suzuki,
R., Hartmann, B.: Learning syntactic program transformations from examples. In:
Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017. (2017) 404–415

25. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: Models and first results. In: ASE ’13. (2013) 356–366

26. Yi, J., Ahmed, U.Z., Karkare, A., Tan, S.H., Roychoudhury, A.: A Feasibility Study
of Using Automated Program Repair for Introductory Programming Assignments.
In: ESEC/FSE ’17. (2017)

	TipsC: Tips and Corrections for programming MOOCs

