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Cover Abstract

This short brief details dive computers, operation, protocols, models, data, tests,
risk, and coupled applications. Basic diving principles are detailed with practical
computer implementations. Topics are related to diving protocols and operational
procedures. Tests and correlations of computer models with data are underscored.
The exposition also links phase mechanics to decompression theory with equations
used in computer syntheses. Happily today, we are looking at both dissolved
gases and bubbles in our staging regimens and not just dissolved gas protocols.
Onward through the fog. As research expands, dive computers are quick to
incorporate new diving technology and science. References are both extensive and
pertinent to topical developments and history. Applications focus upon and mimic
dive computer operations within model implementations for added understanding.
Intended audience are the computer scientist, doctor, researcher, engineer, physical
and life sciences professional, chamber technician, explorer, commercial diver,
diving instructor, and technical and recreational divers with a need for a concise
yet thorough treatise on dive computers and applications.
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Preface

This brief focuses on dive computers, operation, protocols, models, data, tests, risk,
and associated applications in working detail. Basic diving principles are framed
as incorporated and implemented in dive computers. Topics are keyed to diving
protocols and operational procedures. Tests and correlations of models with data are
underscored. The exposition also links phase mechanics to decompression theory
with equations used in computer synthesis. References are both extensive and
pertinent to topical development and history. Applications focus upon and mimic
dive computer operations and model implementations for added understanding. A
recap with questions and answers posed to the Authors completes the brief. The
intended audience are the computer scientist, doctor, researcher, engineer, physical
and life sciences professional, chamber technician, explorer, commercial diver,
diving instructor, and technical and recreational divers with a need for a concise
yet thorough treatise on dive computers and applications.

Theory and dive computer application are, at times, more an art form than exact
science. Some believe deterministic modeling is only fortuitous. Technological
advance, elucidation of competing mechanisms, and resolution of model issues
over the past 100 years have not been rapid. Model implementations tend to be
ad hoc, tied to data fits and difficult to quantify on just first principles. Almost any
description of decompression processes in tissue and blood can be disputed and
possibly turned around on itself. The fact that decompression sickness occurs in
metabolic and perfused matter makes it difficult to design and analyze experiments
outside living matter. Yet, for application to safe diving, we need models, tests, data,
and correlations to build tables and dive computers. And, regardless of biological
complexity, certain coarse grain biophysics principles, some neglected in the past,
are making a substantial change in diver-staging regimens, decompression theory,
and coupled data analysis. Happily today, we are looking at both dissolved gases
and bubbles in staging regimens and not just dissolved gas approaches of Haldane,
As research expands, dive computers will be quick to reflect new diving technology
and science. And that means enhanced safety.

Happy and safe diving always.
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Units and Fundamental Constants

Note so-called diving units are employed herein, that is, standard SI units for depth
and pressure are not used. Instead, pressures and depths are both measured in feet-
of-seawater ( fsw) or meters-of-seawater (msw). The conversion is standard,

10 msw = 33.28 fsw =1 atm

Specific densities, 1 (dimensionless) in pressure relationships, are normalized to sea
water density with freshwater-specific density equal to 0.975.

Breathing mixtures, such as nitrox (nitrogen and oxygen), heliox (helium and
oxygen), and trimix (helium, nitrogen and oxygen), carry standardized notation. If
the fraction of oxygen is greater than 21%, the mixture is termed enriched. Enriched
nitrox mixtures are denoted EANX; enriched heliox mixtures are denoted EAHx. For
other mixtures of nitrox and heliox, the convention is to name them with inert gas
percentage first and then oxygen percentage, such as 85/15 nitrox or 85/15 heliox.
For trimix, notation is shortened to list the oxygen percentage first and then only
the helium percentage, such as 15/45 trimix, meaning 15% oxygen, 45% helium,
and 40% nitrogen. Or TMX 15/45 is used. Air is sometimes noted EAN21 or 79/21
nitrox even though not enriched.

Unit Conversion Table

Time
1 sec = 10% msec = 10° psec = 10° nsec
1 megahertz = 10° hertz = 10° sec™!

Length
1m=3.28 ft =1.09 yd =39.37 in
1 um = 10* angstrom = 10> nm = 10~ m
1 km = 0.62 mile
1 fathom =6 ft
1 nautical mile = 6,080 ft = 1.15 mile = 1.85 km
1 light year = 9.46 x 10'2 km = 5.88 x 1012 mile
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XVi Units and Fundamental Constants

1 parsec = 3.086 x 10'% m = 3.262 light year

Speed
1 km/hr =27.77 cm/sec
1 mile/hr = 5280 ft/sec
1 knot = 1.15mi/hr = 51.48 cm/sec

Volume
1 em3 = 0.06 in3
1 m3 =3532 ft3 = 1.31 yd*
11=10%cm3 = .04 f13 =1.05 gt

Mass, Density, and Viscosity
1 kg =32270z=2.201b
1 g/em3 =0.57 0z/in’
1 kg/m3> =0.061b/f13
1 dyne sec/em? = 1 poise = 0.10 pascal sec = 0.01 poiseuille

Force and Pressure
1 newton = 10° dyne = 0.22 b
1 g/cm?* = 0.23 0z/in?
1 kg/m? =0.201b/f1?
Latm =32.56 fsw = 10 msw = 1.03 kg /cm?* = 14.69 lbs/ in?

Energy and Power
1 cal =4.19 joule =3.96 x 1073 bru = 3.09 fr b
1 joule =107 ergs = 0.74ft Ib
1keV =10% eV = 1.60 x 107'° joule
1 amu = 931.1 MeV
1 watt =3.41 btu/hr = 1.34 x 1073 hp

Electricity and Magnetism
1 coul =2.99 x 10° esu
Lamp =1 coul/sec = 1 volt /ohm
1 volt = 1 newton coul m =1 joule/coul
1 gauss = 10~* weber/m* = 10~* newton /amp m
1 f =1 coul/volt

Fundamental constants are listed next.
Fundamental Constants

20 = 9.80 m/sec’> (Sea Level Acceleration Of Gravity)
Go = 6.67 x 10~ newton mz/kg2 (Gravitational Constant)
Mo =5.98 x 10** kg (Mass of the Earth)

Iy = 1.98 cal /min cm? (Solar Constant)
c=2.998 x 108 m/sec (Speed of Light)

h =6.625 x 1073 joule sec (Planck Constant)

R =8.317 joule/gmole °K (Universal Gas Constant)



Units and Fundamental Constants XVii

k=1.38 x 10723 joule/gmole °K (Boltzmann Constant)
No = 6.025 x 105 atoms/gmole (Avogadro Number)
mo =9.108 x 1073 kg (Electron Mass)
eo = 1.609 x 10712 coulomb (Electron Charge)
ro = 0.528 angstrom (First Bohr Orbit)
c0= (@) ' x 1.11 x 1071° f/m (Vacuum Permittivity)
wo =47 x 107" h/m (Vacuum Permeability)
ko = (4meg)™! = 8.91 x 10° m/f (Coulomb Constant)
g = po/dmr =1x 107" h/m (Ampere Constant)
o0 = 5.67 x 1078 wart/m* K°4 (Stefan — Boltzmann Constant)

Metrology is the science of measurement and broadly construed encompasses the
bulk of experimental science. In the more restricted sense, metrology refers to main-
tenance and dissemination of a consistent set of units, support for enforcement of
equity in trade by weights, and measure laws and process control for manufacturing.

A measurement is a series of manipulations of physical objects or systems
according to experimental protocols producing a number. The objects or systems
involved are test objects, measuring devices, or computational operations. The
objects and devices exist in and are influenced by some environment. The number
relates to the some unique feature of the object, such as the magnitude, or the
intensity, or the weight or time duration. The number is acquired to form the basis
of decisions effecting some human feature or goal depending on the test object.

In order to solidify metrics for useful decision, metrology requires that any
number obtained is functionally identical whenever and wherever the measurement
process is performed. Such a universally reproducible measurement is called a
proper measurement and leads to describing proper quantities. The equiv-
alences above relate proper quantities to the fundamental constants following
and permit closure of physical laws. Unit conversion follows via the chain rule,
where the unit identities in the table define equivalence ratios that work like simple
arithmetic fractions. Units cancel just like numbers. For instance, from the first table,

103 3
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Acronyms and Definitions

Acronyms are useful and standard throughout the dive community and are employed
herein:

ANDI: Association of Nitrox Diving Instructors

BM: Bubble phase model dividing the body into tissue compartments with halftimes
that are coupled to inert gas diffusion across bubble film surfaces of exponential
size distribution constrained in cumulative growth by a volume limit point

Bubble broadening: Noted laboratory effect that small bubbles increase and
large bubbles decrease in number in liquid and solid systems due to concentration
gradients that drive material from smaller bubbles to larger bubbles over time spans
of hours to days

Bubble regeneration: Noted laboratory effect that pressurized distributions of
bubbles in aqueous systems return to their original non-pressurized distributions in
time spans of hours to days

CCR: Closed-circuit rebreather, a special RB system that allows the diver to fix the
oxygen partial pressure in the breathing loop (setpoint)

CMAS: Confederation Mondiale des Activites Subaquatiques

Critical radius: Temporary bubble radius at equilibrium, that is, pressure inside
the bubble just equals the sum of external ambient pressure and film surface tension
DB: Data bank storing downloaded computer profiles in 5-10 sec time-depth
intervals

DCS: Crippling malady resulting from bubble formation and tissue damage in
divers breathing compressed gases at depth and ascending too rapidly
Decompression stop: Necessary pause in a diver ascent strategy to eliminate
dissolved gas and/or bubbles safely and is model based with stops usually made in
10 fsw increments

Deep stop: Decompression stop made in the deep zone to control bubble growth
DAN: Divers Alert Network

Diveware: Diver staging software package usually based on USN, ZHL, VPM, and
RGBM algorithms mainly
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XX Acronyms and Definitions

Diluent: Any mixed gas combination used with pure oxygen in the breathing loop
of RBs

Diving algorithm: Combination of a gas transport and/or bubble model with
coupled diver ascent strategy

DOD: Department of Defense

DOE: Department of Energy

Doppler: A device for counting bubbles in flowing blood that bounces acoustical
signals off bubbles and measures change in frequency

DSAT: Diving Science and Technology, a research arm of PADI

DSL: Diving Safety Laboratory, the European arm of DAN

EAHXx: Enriched air helium breathing mixture with oxygen fraction, x, above 21%
often called helitrox

EANX: Enriched air nitrox breathing mixture with oxygen fraction, x, above 21%
EOD: End of dive risk estimator computed after finishing dive and surfacing
ERDI: Emergency Response Diving International

FDF: Finnish Diving Federation

GF: Gradient factor, multiplier of USN and ZHL critical gradients, G and H, that
try to mimic BMs

GM: Dissolved gas model dividing the body into tissue compartments with arbitrary
half times for uptake and elimination of inert gases with tissue tensions constrained
by limit points

GUE: Global Underwater Explorers

Heliox: Breathing gas mixture of helium and oxygen used in deep and
decompression diving

TANTD: International Association of Nitrox and Technical Divers

ICD: Isobaric counter diffusion, inert dissolved gases (helium, nitrogen) moving in
opposite directions in tissue and blood

IDF: Irish Diving Federation

LSW theory: Lifschitz-Slyasov-Wagner Ostwald bubble ripening theory and model
M-values: Set of limiting tensions for dissolved gas buildup in tissue compartments
at depth

Mixed gases: Combination of oxygen, nitrogen, and helium gas mixtures breathed
underwater

NAUI: National Association of Underwater Instructors

NDL: No decompression limit, maximum allowable time at given depth permitting
direct ascent to the surface

NEDU: Naval Experimental Diving Unit, diver testing arm of the USN in Panama
City

Nitrox: Breathing gas mixture of nitrogen and oxygen used in recreational diving
OC: Open circuit, underwater breathing system using mixed gases from a tank
exhausted upon exhalation

Ostwald ripening: Large bubble growth at the expense of small bubbles in liquid
and solid systems

OT: Oxtox, pulmonary and/or central nervous system oxygen toxicity resulting
from over exposure to oxygen at depth or high pressure
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PADI: Professional Association of Diving Instructors

PDE: Project Dive Exploration, a computer dive profile collection project at DAN
Phase volume: Surfacing limit point for bubble growth under decompression

RB: Rebreather, underwater breathing system using mixed gases from a cannister
that are recirculated after carbon dioxide is scrubbed with oxygen from another
cannister injected into the breathing loop

Recreational diving: Air and nitrox nonstop diving

RGBM algorithm: An American bubble staging model correlated with DCS
computer outcomes by Wienke

RN: Royal Navy

SDI: Scuba Diving International

Shallow stop: Decompression stop made in the shallow zone to eliminate dissolved
gas

SI: Surface interval, time between dives

SSI: Scuba Schools International

TDI: Technical Diving International

Technical diving: Mixed gas (nitrogen, helium, oxygen), OC and RB, deep and
decompression diving

TMX x/y: Trimix with oxygen fraction, x, helium fraction, y, and the rest nitrogen
Trimix: Breathing gas mixture of helium, nitrogen, and oxygen used in deep and
decompression diving

USAF: United States Air Force

USCG: United States Coast Guard

USN: United States Navy

USN algorithm: An American dissolved gas staging model developed by Workman
of the US Navy

UTC: United Technologies Center, an Israeli company marketing a message
sending-receiving underwater computer system (UDI) using sonar, GPS, and
underwater communications with range about 2 miles

VPM algorithm: An American bubble staging model based on gels by Yount
Z-values: Another set of limiting tensions extended to altitude and similar to M-
values

ZHL algorithm: A Swiss dissolved gas staging model developed and tested at
altitude by Buhlmann
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