Skip to main content

Lazy Reachability Checking for Timed Automata with Discrete Variables

  • Conference paper
  • First Online:
Book cover Model Checking Software (SPIN 2018)

Abstract

Systems and software with time dependent behavior are often formally specified using timed automata. For practical real-time systems, these specifications typically contain discrete data variables with nontrivial data flow besides real-valued clock variables. In this paper, we propose a lazy abstraction method for the location reachability problem of timed automata that can be used to efficiently control the visibility of discrete variables occurring in such specifications, this way alleviating state space explosion. The proposed abstraction refinement strategy is based on interpolation for variable assignments and symbolic backward search. We combine in a single algorithm our abstraction method with known efficient lazy abstraction algorithms for the handling of clock variables. Our experiments show that the proposed method performs favorably when compared to other lazy methods, and is suitable to significantly reduce the number of states generated during state space exploration.

T. Tóth—This work was partially supported by Gedeon Richter’s Talentum Foundation (Gyömrői út 19-21, 1103 Budapest, Hungary).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.it.uu.se/research/group/darts/uppaal/benchmarks.

  2. 2.

    http://gki.informatik.uni-freiburg.de/tools/mcta.

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_18

    Chapter  MATH  Google Scholar 

  3. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_25

    Chapter  MATH  Google Scholar 

  4. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-1_11

    Chapter  Google Scholar 

  5. Carioni, A., Ghilardi, S., Ranise, S.: MCMT in the land of parametrized timed automata. In: 6th International Verification Workshop (VERIFY-2010), pp. 47–64 (2010)

    Google Scholar 

  6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003). https://doi.org/10.1145/876638.876643

    Article  MathSciNet  MATH  Google Scholar 

  7. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

    Chapter  Google Scholar 

  8. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1_10

    Chapter  MATH  Google Scholar 

  9. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Principles of Programming Languages, pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279

    Article  Google Scholar 

  10. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 990–1005. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_71

    Chapter  Google Scholar 

  11. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approximations for efficient analysis of timed automata. In: Foundations of Software Technology and Theoretical Computer Science. LIPIcs, vol. 13, pp. 78–89 (2011). https://doi.org/10.4230/LIPIcs.FSTTCS.2011.78

  12. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed automata. In: Logic in Computer Science, pp. 375–384. IEEE (2012). https://doi.org/10.1109/LICS.2012.48

  13. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating timed systems. In: Horn Clauses for Verification and Synthesis. EPTCS, vol. 169, pp. 39–52. Open Publishing Association (2014). https://doi.org/10.4204/EPTCS.169.6

    Article  MathSciNet  Google Scholar 

  14. Isenberg, T., Wehrheim, H.: Timed automata verification via IC3 with zones. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 203–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11737-9_14

    Chapter  Google Scholar 

  15. Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 171–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-1_13

    Chapter  MATH  Google Scholar 

  16. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 296–311. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_24

    Chapter  MATH  Google Scholar 

  17. Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 616–632. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_50

    Chapter  Google Scholar 

  18. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework for abstraction refinement-based model checking. In: Formal Methods in Computer Aided Design, pp. 176–179. FMCAD Inc. (2017). https://doi.org/10.23919/FMCAD.2017.8102257

  19. Tóth, T., Majzik, I.: Lazy reachability checking for timed automata using interpolants. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 264–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3_15

    Chapter  MATH  Google Scholar 

  20. Wang, W., Jiao, L.: Difference bound constraint abstraction for timed automata reachability checking. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 146–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19195-9_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tóth, T., Majzik, I. (2018). Lazy Reachability Checking for Timed Automata with Discrete Variables. In: Gallardo, M., Merino, P. (eds) Model Checking Software. SPIN 2018. Lecture Notes in Computer Science(), vol 10869. Springer, Cham. https://doi.org/10.1007/978-3-319-94111-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94111-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94110-3

  • Online ISBN: 978-3-319-94111-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics