
From SysML to Model Checkers via
Model Transformation

Martin Kölbl(B), Stefan Leue(B), and Hargurbir Singh

University of Konstanz, Konstanz, Germany
{martin.koelbl,stefan.leue,Hargurbir.Singh}@uni.kn

Abstract. In this paper we present an automated translation from the
systems engineering modeling language SysML into the input languages
of the NuSMV, Prism and Spin model checkers. A special focus of this
work is the semantics of the communication mechanisms used in a syn-
tactic fragment of SysML, in particular synchronous and asynchronous,
broadcast and buffered communication. In order to achieve generality of
our approach, which supports establishing the consistency of the transla-
tion as well as enabling easy adaption between different source and target
languages, we use a model based transformation approach. In particular,
we use the ATLAS Transformation Language (ATL) framework that is
nicely integrated in the Eclipse Modeling Framework (EMF) and in the
Meta-Object Facility. We illustrate the application of this model trans-
formation approach using an airbag system as a case study.

1 Introduction

The use of model-based software and systems engineering in the design of crit-
ical systems implies the need to prove high dependability properties, including
correctness, of these designs since human life or substantial damage to the envi-
ronment is at stake. While a vast array of formal analysis techniques, such as
model and causality checking [1,2], have been developed to analyze model based
designs for compliance with these properties, there is a substantial gap between
the syntax and the semantics of model-based engineering languages and the
input formats that the formal analysis tools accept. In particular, each model
checking tool typically provides its own input language, designed to provide opti-
mal abstractions enabling efficient model checking. Even if some model checking
tools aim to provide open interfaces, e.g., LTSmin [3], there is no commonly
accepted input format for models that would be processed by a large number
of model checking tools. Also, none of the available model checkers can directly
process the OMG System Modelling Language (SysML) [4,5] which is widely
used in industrial practice to model system architectures. SysML is supported
by a large number of commercial and open source modeling tools (e.g., Rhap-
sody [6], Enterprise Architect [7], Papyrus [8].) SysML allows for modeling the
structure and behavior of systems, including inter-object communication. If used
in a design process, the architecture models need to be manually transformed

Konstanzer Online-Publikations-System (KOPS) 
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-fcxzqisum9ld1

Erschienen in:  Model Checking Software : 25th International Symposium : SPIN 2018 : 
proceedings / del Mar Gallardo, María; Merino, Pedro (Hrsg.). - Cham : Springer, 2018. - 

(Lecture Notes in Computer Science ; 10869). - S. 255-274. - ISBN 978-3-319-94110-3 
https://dx.doi.org/10.1007/978-3-319-94111-0_15 



256

into the input language of the chosen model checker. This is human intensive, and
therefore extremely expensive, and furthermore an error prone activity. With an
automated transformation from SysML towards different model checkers, a sys-
tem can easily be checked for faults. When a model checking algorithm detects
a fault in a model, it returns a trace to the faulty state in the form of a coun-
terexample. Each model checking tool, however, returns a counterexample using
a different syntax. Interpreting the counterexample in order to correct the fault
in the model requires intimate knowledge of this syntax.

We propose an automated, rule-based approach to transforming SysML mod-
els to models specified in the input languages of various model checking tools
that we consider. In particular, we will define transformations for the Spin [9],
Prism [10] and NuSMV2 [11] model checkers. Spin is an explicit-state temporal
logic model checker frequently used in the analysis of concurrent software sys-
tems. Prism is a model checker used for the analysis of probabilistic systems.
NuSMV2 is a symbolic temporal logic model checker frequently applied to hard-
ware systems analysis. Automated model transformation facilitates maintaining
consistency by following defined transformation mappings. Notice that since the
input languages of model checkers typically have very specific semantics, only
subsets of the SysML language will be transformed in our approach. We base
our translation on the following precursory research.

– The safety analysis of SysML models implemented in the QuantUM [12] app-
roach and tool includes a transformation of SysML models to the input lan-
guages of the Prism and Spin model checkers. Using causality checking, Quan-
tUM computes causes for faults of a system and presents the computed causes
by fault trees to the user.

– In [13], an approach is described which transforms SysML to NuSMV2.
The transformation is based on an object-oriented view and first transforms
the SysML model to a general model checker model using the support of
JDOM [14]. Afterwards, the general model is translated to NuSMV2 code
using a non-rule based approach.

We exploit, extend and generalize these ideas as follows.

– First, our approach reuses the idea of an object-oriented meta-model and gen-
eralizes it by using model-to-model transformation (MMT) technology. The
previous translation approaches implemented model transformation by using
JDOM or by direct Java programming. A concern with these non rule based
translation approaches is that it is difficult to ensure consistency of the trans-
lation. They also lack flexibility and concept reuse when changing from one
target modeling language to another. We propose to use an MMT approach,
which ensures consistency of the input, output and transformation model
against meta-models during the model transformation, and allows for flexible
re-definition of translation rules when considering a different target modeling
language. As an MMT framework we use the Atlas Transformation Language
(ATL) [15], and the Xpand framework [16] for the model-to-code transforma-
tion, both integrated into the Eclipse Modeling Framework (EMF) [17].



257

– Second, the works cited above transform states, transitions and nested states
along with guards, actions and asynchronous communication. Our approach
extends the forms of communication that the previous approaches support by
also considering SysML synchronous and asynchronous point-to-point com-
munication, asynchronous broadcast, and buffered communication. Although
asynchronous communication can be used to emulate synchronous communi-
cation and broadcasting, we want to take advantage of the expressiveness of
different communication paradigms provided by SysML and enable the user
to model the system using the envisioned logical syntax. The usage of dif-
ferent communication mechanisms also helps us produce more efficient code
in the target model checker input languages, contributing to addressing the
state space explosion problem [1].

– Finally, our approach enables a user to understand a given counterexample by
a transformation from the counterexample syntax of the used model checker
to a SysML sequence diagram.

We illustrate the application of our approach by a case study that applies the
proposed transformation to an airbag model used in previous transformations
[13].

Structure of the Paper. In Sect. 2 we provide a brief overview of SysML, the con-
sidered model checking input languages, ATL and Xpand. In Sect. 3 we describe
our transformation approach, in particular the necessary transformation steps
from SysML to the model checker input languages, and from counterexamples to
Sequence Diagrams. In Sect. 4 we illustrate the transformations by a case study.
We conclude in Sect. 5.

Related Work. A number of publications related to the transformation of SysML
to different analysis tools are available in the literature. For an overview we
refer to [13]. In [18] a transformation is presented which transforms SysML to a
hardware description language using MMT. Similar to our work, that work uses
ATL and meta models, but the target model is fundamentally different from
our target model. We are not aware of any work that translates SysML using
automated model transformation technology into any of the input languages of
the model checkers that we consider.

2 Preliminaries

SysML Model Elements. The purpose of the SysML standard is to define a gen-
eral modeling language for system engineering [4]. SysML uses a subset of the
Unified Modeling Language (UML) [19], but also adds diagrams to the UML.
In the remainder of the paper we will only refer to SysML in the understanding
that many of the syntax and semantics definitions can be found in the UML
specification. In the current paper, we transform only a syntactic subset of the
full SysML language. In SysML, a system model is given by block definition



258

diagrams (bdd), depicting the structure of the architecture, internal block def-
inition diagrams (ibd), representing the internal structure of blocks, and state
chart diagrams (stm), specifying the behavior of the respective block they are
associated with. A bdd describes the overall structure of a system. It comprises
blocks which represent classes, with associations between blocks depicted by
straight lines. An ibd is a refinement of a bdd and encompasses the same struc-
tural elements as a bdd. A block that possesses a behavior description is called
an active block. Using an stm, the behavior of a block is described by states
and transitions. States represent a location of control, and transitions between
states representing state changing activities in the system. In particular, a state
transition may be labeled by a trigger, indicating a wait condition for an event
to occur, a guard controlling the activation of the transition, and effects which
are being executed when the transition is taken. In the context of this paper,
we only consider activities and opaque behavior as transition effects. An opaque
behavior is defined as an arbitrary text that is not specified in terms of its syntax
and semantics in the SysML standard. In SysML, an activity is defined as being
represented by a complex activity diagram. In this paper we only consider activ-
ities that consist of a single send action. The stms of all blocks in the system
are executed concurrently. Stms of one block can interact with stms of other
blocks using shared variable as well as message passing based communication.
Stms follow the hierarchical state machine idea and can contain substates that
represent other hierarchical state machines. We call such states composite states.

Execution of SysML Models. When interpreting the behavior of an SysML model
operationally, for instance by a model checker, we need to comply with the
run-to-completion principle in the semantics of executing stms. As we now
illustrate, this principle leads to ambiguous interpretations of SysML model
behavior. In an SysML model, a state can be active, which means that the
current location of control is in this state. If a composite state is active, this
means that control rests in one of its sub states as well as in the composite state
itself, which means that a set of states can be active at any given point in time.
The set of active states is called a state configuration. A state may be labeled by
entry and exit behaviors which are executed when the state is entered or exited,
respectively, as well as by behavior executed while the system is in that state.
The stm maintains an event pool that contains events that are available to trig-
ger transitions. A state configuration is called stable if all entry behaviors of the
current state configuration are completed and no more transitions are enabled.
The SysML specification defines an execution environment that selects an event
to be processed from the event pool. The precise mechanism how this selection is
performed is not specified. The run-to-completion principle means that when
an stm is in a stable state configuration, the execution environment of the SysML
model selects an event to trigger a transition, the effects of the selected tran-
sition will be executed and the system returns to a stable state. Applying this
principle to a loop in an stm that consists exclusively of transitions that have
enabled guards but no triggers implies that the stm enters a livelock and never
reaches a stable state configuration again. This is not consistent with a further



259

specification in the SysML standard which states that once the execution of an
stm reaches a state, the stm remains in the state until a transition is triggered
by an event from the event pool, or an external asynchronous message termi-
nates the execution. In order to resolve this inconsistency, we assume that in
the context of this paper each transition without an explicitly specified trigger
will find an implicitly defined trigger event in the event pool that allows it to
perform the next transition. Under this assumption a cycle of transitions reaches
a stable configuration in each state of the cycle.

Communication in SysML. The SysML standard defines a large number of types
of communication, including messages. In this paper we only consider communi-
cation between the stms by messages without parameters and return values. We
use the syntax options of SysML to express different forms of communication.
A message event in SysML can be instantiated as a call or a signal event. The
behavior implied by a message event depends on this instantiation. If the mes-
sage event is of type signal event, then the communication is asynchronous and
the stm continues after sending a message without blocking. If the message event
is of the type of a synchronous call event, then the communication is synchronous
and the stm waits until the called operation has finished. Notice that in accor-
dance with the SysML specification, a transition with a synchronous call only
completes the current execution step when the called operation has completed.
In this paper we do not consider asynchronous call events for which the invoking
stm only waits until the operation is called. The type of a send action depends
on the kind of message event that is to be sent. A send signal action sends a
signal event. A call operation action sends a call event. A send action sends a
message to a reception if both refer to the same message event. In the models we
consider in this paper the sending stm is assumed always to be different from the
receiving stm. Signal events and call events are received when executing a trigger
in a transition. If several triggers can receive an event, then the SysML standard
suggests that the trigger from an active substate has priority in execution over
the trigger of the composite state. If several transitions have the same priority,
then the transition to be executed is selected non-deterministically.

Special forms of asynchronous communication are broadcast and buffered
communication:

– SysML provides broadcast communication using a send action of type broad-
cast signal action. SysML defines the receivers of a broadcast as all potentially
available targets and mentions that the exact set of targets is not defined. To
represent broadcast in this paper we assume that the broadcast is directed to
every block that has an stm with a matching receiving trigger on one of its
transitions.

– SysML supports the modeling of buffered communication by adding First-In-
First-Out (FIFO) queues to the sending actions. Since the target of our work
is the use of finite state verification technology to analyze SysML models we
restrict the capacity of the queues to be finite. If no queue length is specified
in the SysML model we assume a default queue size of one message. According



260

to SysML specification, in case of a full queue the message sent by a send
signal action will be lost. This is a consequence of the fact that a send signal
action just sends a message but does not consider any reception of the signal
event.

Properties in SysML. Since the objective of this paper is to use model checking
technology to verify properties against SysML models we need to consider how
to specify the desired type of properties in SysML. We express a specification in
SysML by using invariants. An invariant is an expression that before and after
each execution step has to evaluate to true and consists of a composition of
Boolean condition about states and variable values inside of a block. Invariants
can be specified using the Object Constraint Language (OCL) [20] which is a
higher order logic formalism defined to specify logical constraints on the SysML.
As a property specification we add an OCL invariant to a model by adding
an OCL formula expressing the property to the topmost element of the model,
called the root. An invariant can refer to other invariants in the other blocks of
the model and use those in order to check a combination of states or variable
values belonging to different blocks. We restrict the OCL formula representing
the desired property to be a propositional formula φ, where the propositions in
φ refer to variable values and states being active or not. The model checkers
NuSMV2, Prism and Spin are capable of verifying such invariant properties, for
instance by translating them to the Linear Time Temporal Logic (LTL) [21]
formula �φ and performing LTL model checking using this property on the
model.

SysML Sequence Diagrams. A SysML sequence diagram [4] is an interaction
diagram and depicts the message flow between actors and blocks of the system.
The diagram consists of several Lifelines which model concurrent processes.
Behaviors like activities and send actions of a process can be added to a lifeline by
a behavior execution specification. A behavior execution specification is depicted
by a rectangle on the lifeline of the executing process. Lifelines are arranged
next to each other and along each line, the order of the events in each of the
depicted actors and blocks is from top to bottom. A message is depicted by
arrows from a sender to a receiver process. Asynchronous message are depicted
with an arrow and synchronous messages are depicted with a filled arrow.

The NuSMV2 Modeling Language. NuSMV2 is a symbolic model checker which
is used for the verification of synchronous and asynchronous finite state sys-
tems [11]. NuSMV2 can perform finite state model checking for LTL specifica-
tions. In this section, we introduce the parts of the NuSMV2 input language
which are relevant for our approach. A short example of NuSMV2 code is given
in Listing 1.1.



261

MODULE main ( events )
VAR

s t a t e : {run , undetected } ;
ASSIGN

i n i t ( s t a t e ) := run ;
next ( s t a t e ) :=

case
s t a t e = run & events != ECU_error : undetected ;
TRUE: s t a t e ;

e sac ;
Listing 1.1. NuSMV2 Example

An asynchronous model consists of several concurrent processes. In NuSMV2,
each concurrent process is defined by the keyword MODULE. Each MODULE con-
sists of two sections. In the section VAR the variables are declared. Section ASSIGN
contains variable assignments. The keyword init declares the initial value of a
variable. The NuSMV2 model specifies a transition system. Variable values can
be changed in the next clauses which describe how the value of a variable changes
in the course of a state transition. In the example, the statement next(state)
changes to the value of the variable undetected if the guards state = run and
events != ECU_error evaluate to true. The TRUE:state clause is executed if
the guards are false, which means that the state remains unchanged. All possible
variable changes of a single process are done at once, but only one process at
a time. NuSMV2 allows the declaration of variables as an enumeration of non
reserved strings as value range. The MODULE called main can define global
variables and other MODULES. NuSMV2 has no special syntax or semantic
definition for the declaration of communication channels.

The Promela Modeling Language. Promela is the input language of the explicit
state model checker Spin. It combines a fragment of the syntax of the C pro-
gramming language with guarded commands and specific communication prim-
itives [9].
i n t p roce s s1_sta t e s = 0 ;
chan channel1 = [ 0 ] o f { bool } ;
chan channel2 = [ 1 ] o f { bool } ;
proctype proce s s1 {
do
: : p roce s s1_sta t e s == 0 −> proce s s1_sta t e s = 1 ; channel1 ! t rue ;
: : p roce s s1_sta t e s == 1 −> channel2 ? t rue ; p roce s s1_sta t e s = 0 ;
od ;

Listing 1.2. Promela example

Concurrent processes in Promela are defined as proctypes, as illustrated in
Listing 1.2. Variables are declared with a type and can either be defined locally
inside a proctype, or globally. Computation steps from different proctypes are
arbitrarily interleaved. Sequences of Promela statements included in an atomic
statement will not be interleaved by statements in concurrent proctypes. Promela



262

provides keywords for the definition of channels as well as the sending and receiv-
ing of messages. As shown in the example, if the process1 is in state 0 then it
can send a message to channel1 and if the process is in state 1 it can receive a
message from channel2. Channels are defined with the keyword chan, indicat-
ing a type and a capacity of the channel. A channel is defined as synchronous
if the size is zero as in the example with channel1, or asynchronous with a
non-zero positive size as with channel2. A synchronous message can only be
sent by a sender if another process is ready to receive the message. The synchro-
nization statement of a channel breaks the atomicity of an atomic statement at
the point of sending the message and goes on with the receiving statement. For
asynchronous communication in SysML we use a asynchronous First-In-First-
Out (FIFO) channel of Spin. If the channel is full we instruct Spin to lose the
message and proceed.

The Prism Modeling Language. The model checker Prism allows for the model
checking of a probabilistic timed variant of CTL relative to discrete or continuous
time finite state Markov chain models. SysML has language elements that allow
to add probabilities and stochastic rates to the model. We currently do not
interpret these SysML elements and assume all probabilities to have a rate of 1.

A Prism code sample is presented in Listing 1.3. Concurrent processes in
Prism are defined by the keyword module. Variables can be defined locally by
a name, type, initial value and range. Transitions can have a synchronization
event name inside of the brackets [...], a guard, a probability and several
actions. If different processes have a transition labeled with the same synchro-
nization event, then these transitions can only be executed synchronously. All
other transitions are taken sequentially in an arbitrary sequence. The update of
a variable is indicated using the frequently encountered “prime” notation. For
instance, in the course of the transition1 transition in Listing 1.3 the variable
done is assigned the new value true. There is no explicit syntax in Prism to
define a communication channel.

module proce s s1
s t a t e s : [ 0 . . 1 ] i n i t 0 ;
done : bool i n i t f a l s e ;
[ t r a n s i t i o n 1 ] ( done = f a l s e ) −> 0.01 : ( done ’= true ) ;

endmodule
Listing 1.3. Prism example

The Atlas Transformation Language (ATL). ATL is a domain specific transfor-
mation language and provides a framework for the rule-based model-to-model
transformation of XMI [22] based models. ATL addresses two important issues
in model transformation. First, it checks the syntactic correctness of the input
model and hence avoids an ill formed input model to lead to an ill formed output
model. Second, it supports the assurance of correctness and unambiguity of the
transformation rules for complex model transformations. ATL addresses these



263

problems by exploiting the idea of meta-models for the purpose of model trans-
formation. A meta-model is a special model representing the model elements of
the modeling language used [23]. For instance, it specifies rules that determine
what the correct structure of a SysML model is, and what its admissible elements
are. ATL allows a declarative description of transformation rules by the use of
meta-models. Transformation rules can refer to the elements in the source and
target model. This leads to a more dependable model transformation than a non
MMT based approach since the complexities entailed by the selection of source
elements and the application of rules is handled automatically by ATL [15].

The structure of an ATL transformation process is depicted in Fig. 1. ATL
parses a source model MA in accordance with a source meta-model MMA and
ensures that a source model conforms to its source meta-model or recognizes
the source model as ill defined input model. Then the ATL code mma2mmb.atl
describes how a source model is converted to a target model which conforms to
a target meta-model MMB. The ATL code itself has to conform to the ATL meta-
model ATL. To ensure correctness of the transformation, all meta-models have
to conform to the standard meta-meta-model Meta Object Facility (MOF) [15]
proposed by the OMG. ATL has its own syntax, but also inherits a subset of
Java and OCL syntax. OCL operations provide a common way to work with
collections, for instance the forall operator that can be used to iterate over a
collection. Transformation rules are described in the ATL code as a set of map-
pings between source and target patterns with imperative operations performed
on the source elements. Each element of the source model matches at most to
one transformation rule.

An example for an ATL rule E2E is given in Listing 1.4. The rule refers to
elements of the meta-models MMa and MMb. In the rule, we describe the transfor-
mation from a source element of type EnumerationLiteral to a target element
of type StringEnumeration where the rule transfers the information from the
attributes name and id. The source pattern contains a conditional statement
which restricts the matching to source elements whose name starts with an A.
r u l e E2E{from s : MMa! Enumerat ionLitera l ( s . name . startsWith ( "A" ) )

to t : MMb! StringEnumeration (name <− s . name , ID <− s . ID)}
Listing 1.4. ATL example

There are three types of ATL rules:

1. Matched rules. These are the basic rules which will be matched against the
source elements. The rule name must be unique and contain a source and a
target pattern. The example in Listing 1.4 is a matched rule.

2. Lazy rules. This type of rule is only called through other rules. It is usually
used to create child elements and helps in traversing the XMI model.

3. Called rules. These rules behaves similar to lazy rules but don’t contain any
source pattern. They can be called at the entry and exit of the transformation
execution. Called rules are used to create new elements in the output model
for which no source elements exist.



264

Fig. 1. Overview of ATL transformation [15]

Xpand is a framework supporting the model-to-text transformation for the gen-
eration of text files for domain specific languages (DSLs). We use Xpand here to
generate code of the model checker input languages based on the XMI produced
by the ATL model transformation. To do so, we need a source model, a source
meta-model and the Xpand code which is executed to create the output text file,
representing the model checker input code. For the source meta-model in Xpand,
we reuse the target meta-model of ATL. The Xpand code for a transformation
is called a template, for an example see Listing 1.5. In a template, we define the
structure of the target text file. Xpand specific code is written between the signs
« and ». Any text outside of these characters is considered part of the target
output file syntax and is written directly to the target file.
«IMPORT MMb»
«DEFINE main FOR Model−»
«FILE f i l ename +". txt "−»
s t a t e s = {«EXPAND subs ta t e FOREACH t h i s . s t a t e s SEPARATOR ’ , ’ −»}
«DEFINE subs ta t e FOR State−»« t h i s . name−»«ENDDEFINE»
«ENDFILE»
«ENDDEFINE»

Listing 1.5. XPAND example

The Xpand code example in Listing 1.5 first checks whether the input model
conforms to a meta-model MMb. The Xpand code starts inside the «DEFINE»
statement main by creating a file and writing the text “states =” to the file.
Afterwards the «EXPAND» statement substates iterates over a comma separated
list states of states. For each state of the list the «DEFINE» statement with the
same name as the EXPAND statement is called with a element of type State. The
called «DEFINE» statement writes the name of the current state into the file.

3 Model Transformation

Model Transformation Approach. Our approach consists of two transformations.
First, we transform a SysML model into the input language of the considered
model checkers. Second, if a model checker identifies a counterexample to the



265

Fig. 2. Structure of the transformation

property that we are interested in, we translate this counterexample into a
SysML sequence diagram. The SysML models that we wish to analyze are edited
using the Papyrus editor and saved in XMI format. We then use ATL to parse
the XMI model of Papyrus and transform the model to an Intermediate Model,
and finally transform this model to the different model checking languages using
Xpand. An overview of the model transformation approach is depicted in Fig. 2.
ATL parses the input Papyrus Model and checks if the contained model con-
forms to the UML 2.5.0 meta-model of Eclipse. Afterwards, ATL transforms the
model into an Intermediate Model. As a target meta-model we use the one
defined as intermediate meta-model in [13]. We use the intermediate meta-
model in order to ensure that the intermediate model contains all necessary infor-
mation, for example stms, states, transitions, guard, etc. After the generation
of the intermediate model and using the specific templates of the model check-
ers, Xpand translates the elements of the intermediate model into the Target
Model. The Target Model contains the model and the property in the syntax of
the currently considered model checker. The support for further model checkers
can be added by using additional Xpand templates.

Property Generation Rules. As explained before, we transform a property defined
as a state invariant in SysML to an LTL expression in the syntax of the consid-
ered model checker. ATL parses the state invariant included in the SysML model
and adds it to the Intermediate Model. Xpand then transforms the property
from the Intermediate Model to the property used by the currently considered
model checker. While the transformation of the SysML model is independent of
the property we wish to check, we currently only support the transformation of
OCL specified invariant properties.

State and Transition Transformation Rules. We shortly sum the basic trans-
formation rules from SysML to a model checker model that we adopt from our
precursory work, [12,13]. We only support nested states in stm diagrams and not
referenced stms. Each stm defines a concurrent process in the respective model
checking input language. We flatten nested states by encoding each state in the
model by a unique name. The unique name is the combination of the names
of all nesting states of the current state and the name of the state itself. Spin
directly uses state names and can change the current state by a goto statement
to the next state. In NuSMV2 and Prism, the current state of an stm is stored



266

by a variable with a name of the stm extended with “_states” for Prism and in
the variable named state in NuSMV2. In NuSMV, the variable is of type enu-
meration and stores the current state name. In Prism, the state variable stores
a unique number for each state of a block. A model transition can change the
current state by changing the value of the state variable. A model transition is
only enabled if the source state is the current state of the stm. We add an extra
guard, which enables a transition if the current state of the stm is the source state
of the transition, to each transition. If the current state is a substate and has
a composite state, then the transitions of the composite state are also enabled.
Our transformation flattens the state hierarchy and hence, a transition that was
enabled in the composite state is no longer enabled when entering a substate.
As a consequence we enable all those disabled transitions in the composite state
again by copying them to the substate. The translation of guards and effects
of transitions is straightforward. Entry and exit behavior of a model state are
added during the model transformation as effects to the corresponding transi-
tion in the intermediate model. An effect of a transition can be an activity or
opaque behavior. We use an activity with a single action to represent the sending
of a message event, and an opaque behavior in OCL format to characterize the
update of a variable using a logical formula. In the context of this paper, we only
allow a single effect for each transition. This ensures consistency of the generated
model checking input code among the different model checkers that we support
since it avoids problems ensued by the different execution order semantics that
these model checkers assume. In particular, just like SysML, Spin executes effects
of a transition one after another in a sequential sequence while the Prism and
NuSMV models that we generate execute all effects of taken transitions in one
atomic step. With only one effect on a transition the model checkers do not
deviate from the restricted SysML behavior.

Messages in Promela. Synchronous and asynchronous point-to-point commu-
nication messages are first class citizens in the Promela language. They are
introduced in the language by declaring synchronous or asynchronous channels,
and listing certain message names as being valid message names along these
channels. We use the language constructs that Promela provides in order to
define synchronous and asynchronous buffered communication. A transition with
a synchronous call is executed at once or not at all since we clasp the guard and
effects of a transition in Promela by an atomic statement. Sequences of Promela
statements inside an atomic statement are not interleaved by other concurrent
statements. However, with a synchronous message, the atomic statement of the
sender will break and execute the atomic statement of the receiver. Since in our
modeling the sending transition can have only one action as an effect, all effects
in the synchronization are executed in the correct sequence. In order to emulate
asynchronous broadcast, we create an asynchronous channel for each receiver
and send a message to each one of them. Since we need to send all messages at
once, we enclose the sending actions to these channels by an atomic statement.



267

Messages in NuSMV2. There is no native syntax for messages in NuSMV2. In
order to emulate synchronous communication we add the guard conditions for
the receive transition in the receiving process to the guard condition of the send
transition in the sender, thus ensuring that the sending can only be executed
when the receiver is ready to receive. Furthermore, in order to ensure that in the
course of one transition in the NuSMV2 model only one synchronous communica-
tion occurs the sending process sets a global variable to a value that is unique for
this communication. This variable deactivates all transitions except the receiving
transition. When executing the receiving of the message, the receiver resets the
global variable. In order to emulate an asynchronous broadcast communication
we create an array with one element corresponding to one receiving stm, for
every receiving stm. When broadcasting the message, each entry of the array
is set to true at once. Since the semantics of this broadcast is asynchronous in
nature, there is no requirement to suspend the execution of any of the other
modules. To emulate buffered communication, we use an array of variables that
behaves like a FIFO queue. The length of the array is equal to the capacity of
the sender queue as defined in the SySML model. Each entry of the array rep-
resents a position in the queue. As a consequence, multiple sending of messages
are stored in the queue until the queue is full and then the extra messages are
discarded. This persists until the receiver processes previously sent messages.

Messages in Prism. There is no native syntax for messages in the Prism input
language either. Similar to the case of NuSMV2, we emulate the channels by
using variables, but with slight differences. In order to emulate synchronous
communication we take advantage of the implicit synchronization that Prism
performs for several transitions synchronization event names, for which we use
the name of the call event and the sender process. With this name encoding,
we distinguish between several possible senders sending the same call event to
the same receiver. In order to emulate asynchronous communication, like for
NuSMV2 we create a variable. Prism does not permit the use of global variables
together with label based transition synchronization. We therefore use a local
variable inside the sending stm in order to coordinate the asynchronous sending
and receiving. When sending the message, this variable is set to true. Since
the variable is local, it can only be reset in the sending process. We generate an
auxiliary transition in the sender which is independent of the remaining behavior
of the sender. It is synchronized with the receive transition in the receiving
process via a transition label and resets the local variable. Broadcasting and
buffered communication are emulated similarly as in the case of NuSMV2. A
minor difference is that Prism has no syntax for arrays. We therefore create an
individual variable for each entry of the array. In buffered communication, when
the first element of the fifo queue is read, the value of each entry of the queue is
copied to the entry ahead of it.

Counterexample to SysML Sequence Diagram Transformation. We propose the
following steps to transform the counterexample that one of the considered model
checkers produces into a Sequence Diagram. We interpret the counterexample,



268

for which every one of the considered model checkers uses a different syntax, as
a model and apply ATL based model transformation to this syntax in order to
obtain a sequence diagram representation in XMI format.

1. Parsing the Counterexample. For an ATL transformation, we first need to
parse the counterexamples which are stored in different textual formats
depending on the model checker that was used. In order to accomplish this
we need extra information from the original model, for instance regarding the
names of the blocks that exchange messages, the events occurring along a
state sequence, etc., since not all of this information is included in the state
name sequences that the model checkers generate as counterexamples. We
obtain this information by parsing the original SysML model.

2. Transformation into a Sequence Diagram. We next transform the parsed
counterexample to a sequence diagram using an ATL transformation. For
each process in the input model of the model checker we create a Lifeline in
the sequence diagram, representing a concurrent thread of execution. A coun-
terexample consists of a sequence of state and transition whereas a sequence
diagram depicts the control flow of the system by a sequence of message send
and receive events. Transitions of a stm without messages are depicted by
a behavior execution specification. The behavior execution specification has
as a name the current state name and contains the name and values of any
changed variable. When a message is sent to another stm, then the message
points from the sending to the receiving stm and the message name is set
to the name of the sender, the current state name of the sender and the
message event name corresponding to the message sending. A possible vari-
able change of the reiving transition is added as an invisible attribute to the
message arrow.

3. Generation of Graphical View. Using another ATL transformation step we
generate a graphical view for the Papyrus IDE from the sequence diagram.

4 Case Study

The Airbag Model. We illustrate our approach by applying it to a real world
model of an airbag system adopted from [24]. The SysML model of this system
was edited using the Papyrus tool and is an extension of on the SysML model
of the same system used in [13]. In particular, we added different inter process
communication mechanisms in order to be able to experiment with the model
translation rules for these mechanisms that we defined above. An overview of
the airbag SysML model is given as a bdd in Fig. 3. The dashed arrows represent
communication from a sender to a receiver block. The most important block in
the airbag model is the MicroController. It continuously evaluates whether the
two sensors represented by the block MainSensor and the block SafetySensor
detect a critical accident of the vehicle, represented by the block Car. When this
is the case, the deployment procedure for the airbag will be activated.

There are two meaningful properties to check for an airbag system. The first
is to ensure proper functioning, i.e., to ensure that the airbag can be deployed.



269

Fig. 3. bdd of the Airbag model

The second property is the absence of an inadvertent deployment of the airbag
when no accident has occurred. From a system safety point of view this is the
more significant property to check, and we have focussed on it in some of our
previous work on this model, e.g., in [24]. However, the counterexamples to
inadvertent deployment are relatively short. We focus on the proper functioning
property in this paper since it returns longer counterexamples and is hence better
suited to illustrate the application of our approach.

In order to understand the behavior of the Airbag model, an understanding
of the two safety mechanisms designed to avoid an inadvertent deployment is
essential. First, the Field Effect Transistor (FET) controls the power supply of the
airbag squib. Only if the MicroController enables the FET, the airbag squib has
enough power to deploy the airbag by igniting the explosive. Second, the Firing
Application Specific Integrated Circuit (FASIC) only ignites the airbag squib if
it first receives an armFASIC message and then a fireFASIC message from the
MicroController.

Communication in the Airbag System. We use different forms of communication
to forward information in the airbag system. In case of an accident the block Car
broadcasts a message crashHappened to both sensors. The two sensors receive
the broadcast message and start to repeatedly forward the information regarding
the accident by buffered communication. The block MainSensor sends a mess-
sage mainSensorCrashDetection and the block SafetySensor sends a message
safetySensorCrashDetection. The repetition of the message ensures, that not
a single wrong message can deploy the airbag. The microcontroller receives the
messages of both sensors and starts the airbag deployment process after receiv-
ing the accident notification of each sensor two times. In order to start the
deployment process the block MicroController sends the following three asyn-
chronous messages. A message armFASIC is sent to the block FASIC and causes
the fasic to go into state arm. A message FETPoweredOn is sent to the block FET
which enables the power supply when received. A message fireFASIC is sent to
the block FASIC which causes the fasic to transit from state arm into state fire.
It is now important to ensure that the squib will only explode and deploy the
airbag if the power supply is enabled at the time of firing the squib. We model



270

the coordination regarding the deployment of the airbag between the FET and
the FASIC by two synchronous messages that are exchanged between these two
processes. In case the FET is enabled, it can send a message FETPoweredOn, oth-
erwise it can send a message FETPoweredOff in order to communicate its state
to the FASIC. If the FASIC accepts the synchronization via the FETPoweredOn
message this means that the airbag will actually be deployed by the FET applying
an ignition voltage to the squib. The FASIC then transits into the state fired. If,
however, the FASIC and the FET synchronize via the FETPoweredOff message,
this means that the FET is not prepared to deploy the airbag and the FASIC
transits into its initial state.

Property Specification. We specify the proper functioning property of the airbag
system using an invariant. The invariant expresses that it is always not the case
that the airbag is deployed and the car has an accident. If a model checker finds
a counterexample for this invariant then the counterexample contains a sequence
of states and transitions that starts with a car accident and terminates with the
deployment of the airbag.

Analysis of the Airbag Model. We model check the models that we obtain from
the above described translation into the target languages of the NuSMV2, Spin
and Prism model checkers for the proper functioning property. Each model
checker results in a counterexample to the property. We automatically trans-
form the resulting counterexample of NuSMV2 to a SysML sequence diagram,
depicted in Fig. 4. A similar translation of the counterexamples for the other two
model checkers is easily possible, but currently not implemented. Note that the
change of the variable values is not visible in the figure, but it is viewable when
browsing the diagram in the Papyrus IDE. The model transformations were per-
formed on a computer with an i7-4820K CPU (3.7 GHz), 32 GB of RAM and a 64
bit Linux operation system. In Table 1 we show the memory usage and time nec-
essary to transform SysML models to the different model checker input models,
to verify the airbag model in the different model checkers, and for the NuSMV2
case to transform a counterexample to a sequence diagram. Additionally, we
depict the count of states searched by each model checker. For the verification of
the airbag model, Spin uses with 128.3 MB an order of magnitude more memory
than the other model checkers. The higher memory consumption of Spin is due
to the use of a hash table which has at least a size of 128 MB.

Table 1. Computational effort

Model transformation Model checking Sequence diagram generation
Memory Time Memory Time States Memory Time

NuSMV2 9.6 MB 37 ms 10.0 MB 0.092 s 3279 9.6 MB 75 ms
Spin 9.6 MB 35 ms 128.3 MB <1 s 1432
Prism 9.6 MB 34 ms 8.5 MB 0.023 s 984



271

Fig. 4. Sequence diagram depicting the NuSMV2 counterexample, rendered by Papyrus



272

Result Interpretation. The sequence diagram representing the counterexample
produced by NuSMV2 consists of 6 lifelines, one for each module in the NuSMV2
code of the airbag model. The sequence diagram depicts ordered sequences of
local module events, corresponding to local steps in the Airbag SysML model,
as well as synchronous and asynchronous message passing events that lead up to
the firing of the airbag, indicated by the FASIC entering the fired state.

The counterexamples produced by all three model checkers are similar. Each
counterexample contains the necessary transitions to get from a car accident to
a deployment of the airbag. The counterexamples mainly only differ in the order
in which the transitions in the model are executed, but all contain the same set
of transitions. NuSMV2 performs a short loop that the other model checkers
do not include in the counterexample. For example with the deployment of the
airbag, in NuSMV2 the messages armFasic, fireFasic and enableFet are all
send before any of the messages is received, but in Prism and Promela each
message is received before the next one is triggered.

5 Conclusion

We have presented an approach to automatically translating SysML models to
the input languages of the model checkers NuSMV2, Spin and Prism, using the
ATL framework for model to model transformation. We also propose to use ATL
in order to translate the counterexamples for reachability properties to SysML
sequence diagrams, thus facilitating error interpretation and debugging. We have
illustrated the application of this approach using an industrially relevant case
study.

In spite of the fact that at the time of writing only the SysML to NuSMV2
model transformation is fully automated we anticipate that the proposed auto-
mated model transformation approach is a lot more flexible in adapting to the
target languages of other model checkers, compared to a manual encoding app-
roach. We also foresee that the implicit consistency of the generated target mod-
els with meta models of the used modeling and target languages will support
syntactic and semantic correctness of the generated target models. This will
greatly help to bridge the syntactic and semantic gaps between domain spe-
cific modeling languages, such as SysML, and the somewhat idiosyncratic input
languages of various model checking and other verification tools.

Currently, the flexibility of the approach is somewhat limited by requiring
substantial specific, manual coding effort in the Xpand framework when generat-
ing the target models. We plan to devise meta models for each of the considered
model checker input languages and transform to them from the general meta
model. This will allow to greatly reduce the Xpand related coding effort. We also
plan to establish semantic correctness properties of the model to model trans-
formation using this more refined model transformation approach. We finally
plan to extend the approach to handling liveness properties, which brings up the
question how to specify them in SysML/OCL.



273

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:

Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9_16

3. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_31

4. Object Management Group: OMG Systems Modeling Language, Specification 1.5
(2017). http://www.omg.org/spec/SysML

5. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML, 3rd edn.
Morgan Kaufmann, San Francisco (2014)

6. IBM Corporation: Rational Rhapsody (2017). https://www.ibm.com/us-en/
marketplace/rational-rhapsody

7. Sparx Systems: Enterprise Architect (2017). http://www.sparxsystems.com/
products/ea/

8. Eclipse Foundation: Papyrus IDE (2015). https://www.eclipse.org/papyrus/index.
php

9. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

11. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M.,
Roveri, M., Tchaltsev, A.: NuSMV 2.6 user manual (1998). http://nusmv.fbk.eu/
NuSMV/userman/v26/nusmv.pdf

12. Leitner-Fischer, F., Leue, S.: Quantum: quantitative safety analysis of UML mod-
els. In: QAPL. EPTCS 57, 16–30 (2011)

13. Caltais, G., Leitner-Fischer, F., Leue, S., Weiser, J.: SysML to NuSMV model
transformation via object-orientation. In: Berger, C., Mousavi, M.R., Wisniewski,
R. (eds.) CyPhy 2016. LNCS, vol. 10107, pp. 31–45. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-51738-4_3

14. Hunter, J., Lear, R.: Java Data Object Model (2015). http://www.jdom.org/index.
html

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

16. Eclipse Foundation: Xpand (2007). https://www.eclipse.org/modeling/m2t/?
project=xpand

17. Eclipse Foundation: Eclipse Modeling Framework (2017). https://www.eclipse.org/
modeling/emf/

18. Gauthier, J., Bouquet, F., Hammad, A., Peureux, F.: Verification and validation
of meta-model based transformation from SysML to VHDL-AMS. In: MODEL-
SWARD, pp. 123–128. SciTePress (2013)

19. Object Management Group: Unified Modelling Language, Specification 2.5.1
(2017). http://www.omg.org/spec/UML

20. Object Management Group: OMG Object Constraint Language, Specification 2.4
(2014). http://www.omg.org/spec/OCL



274

21. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
0931-7

22. Object Management Group: XML Metadata Interchange, Specification 2.5.1
(2015). http://www.omg.org/spec/XMI/

23. Object Management Group: OMG Meta Object Facility (MOF) Core Specification,
Specification 2.0 (2016). http://www.omg.org/spec/MOF

24. Aljazzar, H., Fischer, M., Grunske, L. Kuntz, M., Leitner-Fischer, F., Leue, S.:
Safety analysis of an airbag system using probabilistic FMEA and probabilistic
counterexamples. In: QEST, pp. 299–308. IEEE Computer Society (2009)




