
Context-Updates Analysis and Refinement in
Chisel?

Irina Măriuca Asăvoae1, Mihail Asăvoae1, Adrián Riesco2

1 Inria Paris, France
2 Universidad Complutense de Madrid, Spain

Abstract. This paper presents the context-updates synthesis compo-
nent of Chisel–a tool that synthesizes a program slicer directly from a
given algebraic specification of a programming language operational se-
mantics. (By context-updates we understand programming language con-
structs such as goto instructions or function calls.) The context-updates
synthesis follows two directions: an overapproximating phase that ex-
tracts a set of potential context-update constructs and an underapprox-
imating phase that refines the results of the first step by testing the
behaviour of the context-updates constructs produced at the previous
phase. We use two experimental semantics that cover two types of lan-
guage paradigms: high-level imperative and low-level assembly languages
and we conduct the tests on standard benchmarks used in avionics.

Keywords: generic slicing tool, programming languages formal seman-
tics, Maude, synthesis

1 Introduction

Slicing is a well established analysis method that takes a program and a slic-
ing criterion (i.e., a program point pc and a set of program variables V) and
produces a program slice (i.e., the parts of the program containing language
constructs units, usually discriminated based on the sequencing operator, that
change the variables in V, directly or indirectly, during the program executions
either up to or from the program point pc). Note that depending on the moment
slicing is applied, we have either dynamic slicing—used at the program runtime,
and static slicing—used without executing the program. In this paper, we focus
on static slicing and we refer it as simply slicing. Moreover, hereafter we refer
the language constructs units, i.e., the syntactic components of the programming
language that are separated by sequencing operators, as instructions.

The main idea in program slicing relies on the evaluation of the data flow
equations over the control flow graph of the program. Obviously, besides the
data-flow, there is a need of additional techniques to help with other language
features—[34] gives a comprehensive survey on the standard program slicing

? This research has been partially supported by the MINECO Spanish project
TRACES (TIN2015-67522-C3-3-R) and by the Comunidad de Madrid project N-
Greens Software-CM (S2013/ICE-2731)

ar
X

iv
:1

70
9.

06
89

7v
1

 [
cs

.P
L

]
 2

0
Se

p
20

17

2 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

techniques applied over different programming language concepts such as stan-
dard imperative, pointers, unstructured control flow, and concurrency. Generally,
these techniques use the programs’ control flow graphs with various augmenta-
tions, e.g., the function calls are usually represented by call-edges [30]. Conse-
quently, any programming language supporting slicing has to be automatically
translated into control flow graph based models.

Field and Tip show in [11] a method to derive program slices and depen-
dences from term rewriting systems. This method is applicable to any language
with semantics specified as a term rewriting system. Hence, the translation of
the programs into their afferent model for slicing is replaced by describing the
semantics of the programming language as a rewriting system. Furthermore, the
rules in this rewriting system are augmented with wrappers, which maintain the
slicing information. In order to compute a program slice, the term representing
the program is rewritten with the augmented rewriting system until it reaches
the normal form, which contains the slice via the wrappers. This method is tan-
tamount to determining the slice in a dynamic fashion during program execution.

Along the lines of programming language semantics as rewriting systems,
we observe an increased interest in defining various languages to cover many
programming language paradigms. This desideratum is stated in the rewriting
logic semantics project [20], where the programming languages semantics are de-
fined as rewriting systems using Maude, and it is followed by the work in the K
framework [27]. Maude [7] is a high-level language and high-performance system
supporting both equational and rewriting logic computation. Maude modules
correspond to specifications in rewriting logic [19], a logic that allows specifiers
to represent many models of concurrent and distributed systems. This logic is
an extension of membership equational logic [6], an equational logic that, in
addition to equations, allows the statement of membership axioms characteriz-
ing the elements of a sort. Rewriting logic extends membership equational logic
by adding rewrite rules that represent transitions in a concurrent system and
can be nondeterministic. In the context of [20], these rules correspond to the
execution of the different instructions in our programming language, hence al-
lowing a natural representation for any programming language semantics. As a
semantical framework, Maude has been used to specify the semantics of several
languages, such as LOTOS [35], CCS [35], and Java [9]. Moreover, the K-Maude
compiler [28], which is able to translate K specifications into Maude, has eased
the methodology to describe programming language semantics in Maude.

Our work comes to complement the rewriting logic semantics project by
developing static analysis methods, in particular slicing, for programs written
in languages with an already defined rewriting logic semantics in Maude. Our
approach analyses a given programming language semantics and synthesizes the
necessary information for program slicing. We use the results of the syntheses to
traverse the program term in order to obtain the program slice. However, we do
not execute the program as in [11]. Rather, we construct over the program an
augmented control flow graph structure and we use it to obtain the program slice.
The novelty, comparing to the standard methods presented in [34], is that we

Context-Updates Analysis and Refinement in Chisel 3

construct the program models in a generic way, for any programming language
with a given algebraic semantics.

Our approach is implemented in Chisel3, a Maude tool for generic program
slicing [26]. Chisel takes a programming language semantics, given as a Maude
specification, breaks it into pieces of interest for slicing, and uses these pieces to
augment the program term and to produce the model, which is then sliced. For
experiments we use two semantics: a semantics for an imperative programming
language with functions, WhileFun, and a semantics for the MIPS assembly
language. Chisel synthesizes these semantics to extract operators that produce
updates at the memory level. These operators are then used to produce necessary
information for slicing, e.g., side-effect instructions. The final step of Chisel is
the program slicing analysis that takes a program and produces its slice w.r.t. a
slicing criterion. Chisel aims to evolve into a framework for generic static slicing.

The main argument for the genericity claim lays in the fact that any program-
ming language paradigm involves a semantic notion of memory/environment
which is crucial for slicing and on which we focus our syntheses. Another argu-
ment is given by Tip’s survey [34] which presents specialized slicing algorithms
for various programming paradigms. However, there is a price to pay for generic-
ity: the slicing precision. Namely, the analyses of the programming language se-
mantics produce supersets of the language constructs involved in slicing. Hence,
the loss of precision directly depends on the imprecision of the synthesized lan-
guage constructs. For producing more accurate synthesis results, we introduce
the filtering step based on program testing.

With the current development of Chisel we target sequential imperative code
without dynamic allocation that is generated from synchronous designs—a class
of applications used in real-time systems, e.g., avionics. The contribution of this
paper is presenting the context-updates synthesis component of Chisel, where
by context-updates we understand programming language constructs such as
goto instructions or function calls. The context-updates synthesis follows two
directions: an overapproximating phase when we analyse the language seman-
tics specification to extract a set of potential context-update constructs and
an underapproximating phase when we stress-test the semantics to refine the
context-updates obtained at the first step. The underapproximating phase, firstly
introduced in this paper, is justified by the lack of precision of the overapprox-
imating phase for the context-updates. This lack of precision is most likely due
to the laxity of the automatic detection of stack-like memory operators. Note
that the class of target languages, i.e., programming languages present in the
synchronous compilation chain, does not involve pointers while the arrays are
always of fixed size. Since Chisel does not handle programs with pointers yet,
we transform the fixed-size arrays into function calls (i.e., we add to the pro-
gram a function that implements array accesses) so we can use Chisel for slicing
industrial benchmarks that contain arrays.

The rest of the paper is organized as follows: in Section 2 we present a
comparison with existing works on generic program slicing, in Section 3 we give

3 https://github.com/ariesco/chisel

https://github.com/ariesco/chisel

4 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

an overview of the Chisel tool, in Section 4 we describe our method for context-
updates synthesis and its integration in Chisel, and in Section 5 we describe the
experimental evaluation of selected benchmarks. Section 6 concludes and outlines
some future work directions. The complete code of the tool and examples are
available at https://github.com/ariesco/chisel.

2 Related work

Program slicing [36] is a standard analysis technique, hence most static analyzers
contain some variant of program slicing. Slicing techniques [34] are classified as
static, i.e., the slices are computed without assuming a particular program input,
and dynamic, i.e., the test cases determine the program slices.

Standard program analyzers include the necessary infrastructure to com-
pute static slicing in the encoding of the language semantics, the control-flow
graph, the dependency relations between program variables, etc. Examples of
program slicing tools integrated in program analyzer are, for high-level lan-
guages: FramaC [16] for C code, and CodeSurfer [33] and Wala [12] for Java,
whereas for low(er) level languages: Giri [29] for LLVM intermediate represen-
tation, CodeSurfer/x86 for disassembled x86 executables [4], MCSLICE [31] for
Intel IA-32 microcode, and SlicingDroids [15] for Android executables. All these
tools translate a program into a model for analysis, then analyze the model.
However, the translation phase is particular to the language for which the ana-
lyzer is built and takes into account knowledge about the particularities of each
language. Chisel aims to unify the translation phase by inferring the particulari-
ties of each language from its given algebraic semantics. Through this, we explore
the genericity limits of slicing, in particular, and static analysis, in general.

An early work on generic slicing is presented in [8] where the tool compiles a
program into a self slicer. Generic slicing is also the focus in [5,10]. The ORBS
tool [5] proposes a technique for dynamic slicing, based on statement deletion.
A program slice is constructed iteratively by removing statements from the orig-
inal program and then checking if the transformation is semantics-preserving
w.r.t. the slicing criterion. Their semantics preserving verification phase relies
on novel testing techniques [17]. Chisel proposes a complementary technique to
the dynamic slicing of ORBS, as it computes static slicing based on in-depth
investigation of the formal language semantics. We also use benchmark testing
techniques for improving the precision of the context-updates synthesis.

Another generic program slicing technique is proposed in [10] where an algo-
rithm mechanically extracts slices from a common intermediate representation
named PIM. The algorithm relies on a well-defined, non-trivial, and language
dependent transformation between a language semantics of choice and PIM. The
approach in [10] is generic in the sense that notions of static and dynamic slices
are represented as constrained slices and various slicing methods are collapsed
in a parametric slicing procedure. Chisel integrates now only static slicing and
addresses genericity from a different angle: it eliminates the need of a language-
dependent translation by working directly on the language semantics.

https://github.com/ariesco/chisel

Context-Updates Analysis and Refinement in Chisel 5

In rewriting logic, the work in [2] implements dynamic slicing for execution
traces of the Maude model checker. The semantics is executed for an initial
given state, then dependency relations are computed using a backward tracing
mechanism. In comparison, Chisel proposes a static approach built around a
formal semantics and with an emphasis on computing slices for programs and
not for given traces (e.g., of model checker runs). Also, our proposed algorithm for
context-update inference is based on a notion of hypertree, which we introduced
and used for side-effects analysis, in [24]. A similar construction to our hypertree,
called 2D graph is used in [18] for proving termination of term rewriting systems.

Besides the generic aspect of Chisel, we mainly address in this paper the
context-updates discovery component in our framework that is also of interest
in the functional programming community. Functional programming proposes
richer notions of contexts (and context manipulation) than what we consider in
our framework. Briefly, the standard definition of a context as variables in scopes
is extended in functional languages in several directions. On one hand, there are
high-level constructs such as call/cc - call with current continuation - from the
Scheme language [1], where snapshots of the current control states are manipu-
lated as values (e.g., passed as arguments to function calls). One another hand,
there are extended notions for contexts to capture security properties, as in the
SLam calculus from [13] or parameters of the execution platforms [32,22]. For
example, the contexts are used to track how programs affect an execution envi-
ronment (e.g., the effect systems [32]) or the complementary approach about how
programs depend on the execution environment (e.g., the coeffect systems [22]).
In our framework, the context is a first-order variable that could be explicitly
or implicitly represented in the programming languages’ semantics. We identify
context changes (i.e., context-updates) in a generic manner, directly from a for-
mal language semantics given as rewrite theories. Our context-updates discovery
is less particularized as the mentioned related work in functional programming.
This is due to the genericity character of our approach, i.e., we do not address a
particular type of memory/environment representation as the one in functional
programming. Nevertheless, the rich representations of context from functional
programming are of interest for our framework in order to specialize the context-
updates detection with the inference of types of variables updates during context
changes, e.g., different parameter passing styles at function call.

The theoretical ideas underlying Chisel are in [24,3,25]. In [24] we describe
the methodology for performing intraprocedural slicing, which is improved in [3]
by implementing interprocedural slicing. In [25] we introduce an algorithm for
inferring the data-flow information to automatically detect how the language
constructs work with the memory. A description of the implementation of Chisel
could be found in [26]. A preliminary study of the benchmarks used for testing
in this paper is presented in [3], but limited to subparts of the code and only
evaluated on high-level imperative languages.

6 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

Side-Effects
Synthesis

Memory Policies
Synthesis

Context-Update
Synthesis

S
Language
Semantics

Term Analysis

C M C

memory
read/write

memory
stack

Fig. 1. Chisel components: the formal language semantics and the analyses.

3 The Chisel system

We briefly describe in this section the ideas underlying Chisel tool. Chisel aims
to advance the generic synthesis of program models from any programming lan-
guage, provided the algebraic semantics of the language is given as a rewriting
system. For now, the analysis of interest is program slicing. Note that the stan-
dardized model used by program slicing is an augmented control flow graph, i.e.,
a set of control flow graphs connected by call edges.

The crucial information used in slicing is related to the data flow: which
language constructs produce the data flow and how the data is actually flow-
ing. The main observation we use for Chisel is the fact that side-effects induce
an update in the memory afferent to the program. Hence, Chisel first detects
the operators used by the semantics to reproduce memory updates. Then, the
usage of the memory update operators is traced through semantics up to the lan-
guage constructs. Any language construct that may produce a memory update
is classified as producing side-effects. Moreover, following the direction of the
memory updates, we infer also the data flow details (i.e., source-destination) for
each side-effect language construct. Finally, the information gathered by Chisel
about language constructs is used to traverse the term representing the program
and to extract the subterms representing the slice.

The tool works under a few assumptions w.r.t. S–the programming language
semantics specification. Firstly, we assume that S is provided as an algebraic
specification in rewriting logic. Given the bundle of work in the area of program-
ming language specifications using rewriting logic, as discussed in Section 1, we
consider that this first assumption does not impose a restriction on the general-
ity. Secondly, we assume the existence of a certain structure in this semantics.
Namely, the instructions are terms of a particular sort (i.e., a type) and the mem-
ory/environment/machine on which the programs are running are described by
the operators defined in a certain specification module. The idea behind this
assumption is the fact that any semantics of a programming language uses an
(abstract) memory and some operations over this memory.

We present in Fig. 1 the structure of Chisel: its components and their input-
output relations. We briefly address each of the components in the following

Context-Updates Analysis and Refinement in Chisel 7

subsections, except the context-update synthesis, which is the main contribution
of the current work and is to be elaborated in the remaining of this paper.

3.1 Memory policies synthesis

Let us denote M as the part of S that defines some (abstract) form of the
memory used during program execution. Our assumption about the structure of
the memory is that it connects the variables in the program with their values
possibly via a chain of intermediate addresses. We define a memory policy as a
particular type of operators specified using M = {o : w → s}, where w and s
are standardly denoted as the arity and, respectively, co-arity of o. (Note that
s denotes a sort while w denotes a list of sorts.) For example, a memory-read is
the set of operators in M that contain in their arity the sort for variables and
for memory and in their co-arity the sort for values. A memory-write operator
contains in its arity sorts for memory, variables, and values, and in its co-arity
the memory sort. Also, the rules defining this operator change the memory by
updating the variable with the value. In [25] we present the analyses of S for
read/write memory policies that produce the set of operators that manipulate
the memory according to the given policy.

3.2 Side-effect synthesis

Let us denote by C the part of S that defines the operators representing the pro-
gramming language constructs, i.e., language instructions. The first inference
that Chisel has to make is regarding which elements in C modify the program
variables. Since in the memory M the program variables are connected to their
values, determining constructs that modify a variable essentially means track-
ing the effects of an instruction over its variable component until reaching the
memory level. Hence, we name side-effect language constructs those operators
in C that produce a memory-write over some of its variable component.

To determine the subset of C that may be side-effect constructs, Chisel iden-
tifies the set of rules R in S containing in the left-hand side (as a subterm) the
C operators. The side-effect synthesis starts with the rules in R and constructs a
hyper-tree T whose nodes are sets of rewrite rules and edges are unification based
dependencies between these rules. Chisel discriminates the side-effect constructs
by following the paths in this hyper-tree from the root to the leaves. The paths
P leading to leaves that contain rules already classified by the memory policy
phase as memory-writes are signalling the side-effect constructs. This part of
Chisel is presented in [24].

The next phase of the side-effect synthesis consists in using the constructed
T to determine the data flow (source-destination) produced by the side-effect
constructs. Essentially, at this phase, Chisel trickles-up the paths P of the hyper-
tree T , starting from the leaves up to the root. Namely, at the leaves level we
identify the variable subterm as destination and the value as the source. This
identification is based on the read/write memory policy phase. The informa-
tion regarding the source-destination relation between these two subterms (i.e.,

8 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

value/variable) is propagated up on each path in P by a backwards inference of
the unifications of these subterms. When reaching the root of T , the value at the
memory level is hooked to the sources subterms and the variable to the desti-
nation subterms. Hence, we determine the data flow induced by each side-effect
construct and we describe this as a part of [25].

Note that side-effects synthesis determines an over-approximation of the side-
effect constructs. The data flow inference phase only enriches each of the already
discovered side-effects constructs with key information for the program slicing,
i.e., the source-destination direction of the flow of data.

3.3 Term analysis

The algorithm for slicing a program p takes as input a slicing criterion S con-
sisting in a set of program variables. In this step, Chisel takes the tree Tp repre-
senting the program term and traverses it repeatedly. Each traversal phase adds
new elements to the set S and the process is repeated until the set S stabilizes.
While traversing Tp, whenever a side-effect construct is encountered, if the des-
tination of this construct is from S then all the source variables are added to S.
Also, whenever a context-update construct is encountered, the traversal of Tp is
redirected towards the Tp’s subtree whose root matches a particular subterm of
the context-update construct. At the end of the traversal, the program slice is
given by the skeleton of Tp containing the subtrees representing the instructions
that produced changes to the set S.

4 The context-update inference algorithm

In this section we present our approach towards discovering context-update con-
structs in the programming language under consideration. We start by setting
some notation and defining the intuitive ideas. Note that in the followings we
use notation introduced in the previous section.

Firstly, we denote Lp the list of elements from C–the language instructions’
sort–obtained by a preorder traversal of Tp–the tree associated to the program p.
We define as context-update constructs (context-updates for short) those opera-
tors in C that, during program execution using S, produce changes to the list Lp.
For example, function calls and gotos are context-update constructs. We denote
by context-updates synthesis the strategy of deducing, based on the language
semantics S, an overapproximation of the set of context-update instructions.

The methodology we propose for context-updates synthesis follows the same
strategy as the one for side-effects described in the previous Sections 3.1 and 3.2.
Namely, we firstly apply sort-based patterns to the memory module in S in
order to identify stack structures/memory operators or, short, memory-stacks
(Section 4.1). Secondly, using the memory-stacks we traverse the hyper-tree T
to discover the set O of language constructs that directly use the memory-stacks
(Section 4.2). Note that O is an overapproximation of the context-updates since
our target semantics S describe context-free languages of either high or low level.

Context-Updates Analysis and Refinement in Chisel 9

As the context-free languages need some stack representation and we trigger
our context-updates synthesis by an initial phase that discovers memory-stack
patterns in S. Finally, in order to make the set O more accurate we use a
refinement step that, based on the execution of benchmarks, partitions the subset
O in three: Of the function call constructs, Og the goto constructs, and Or the
residue constructs that are present in O due to the overapproximations in the
first two steps (Section 4.3).

4.1 Memory-stack policy

The memory-stack policy determines rules in S constructing stack-like structures
at the memory level. The strategy applied for memory-stack policy is similar to
the strategy described in Section 3.1. Namely, we have two patterns we search
for: explicit and implicit. The explicit memory-stack policy where we determine
non-commutative memory operators s : SS′→S or s : S′S→S that have a
subsorted arity S′ ≤ S and all the rules describing them either add or substract
one element. The implicit pattern uses the conditional rules over the language
semantics to produce memory-stacks. The implicit pattern is produced by the
Maude’s evaluation semantics that uses a an evaluation stack for conditional
rules. Namely, the evaluation of the conditional rule’s body (i.e., the statement
between the crl and if keywords) is postponed until the evaluation of the rule’s
condition (i.e., the statement after if keyword) is completed.

Example 1. We present in this example the memory specification for WhileFun–
an imperative language with assignment, conditional, loops, local variables, an
input/output buffer, and function calls [14,3]. Assuming we have defined the
syntax for the language in a module WHILE-SYNTAX (which includes definitions
for variables, Boolean values, and numeric values), the module MEMORY imports
this module and defines the sorts Env for the environment, which maps variables
to values, and ESt for a stack of environment, which will be used when a new
context is required:

fmod MEMORY is

pr WHILE-SYNTAX .

sorts Env ESt .

subsort Env < ESt .

...

where the subsort indicates that a single environment states for a singleton
stack, i.e., the environment type is a subtype of the environments’ stack . Con-
structors of these sorts are defined by using op and the attribute ctor. In this
case, we define the empty environment (mt); a single assignment, which receives
a variable and a value (underscores are placeholders); and the composition of
environment, defined with empty syntax and defined as commutative and asso-
ciative and having mt as identity:

op mt : -> Env [ctor] .

op _=_ : Variable Value -> Env [ctor] .

op __ : Env Env -> Env [ctor comm assoc id: mt] .

10 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

Similarly, the stack is built by putting together stacks with the _|_ operator:

op _|_ : ESt ESt -> ESt [ctor assoc] .

The operator | follows the explicit memory-stack policy and it will be used in
the context-update synthesis, as described in Example 2 from Section 4.2. The
memory module also contains functions for variables’ update, variables’ look-up,
and new variables allocation. Below we show Chisel commands and the results
for the memory-stack policy applied on WhileFun:

Maude> (memory inferences .)

ESt RWBUF

Maude> (context update sorts .)

ESt

Maude> (memory-stack ops .)

|

Namely, memory inferences command produces the sorts that agree with memory-
stack policy: ESt–the environment stack sort defined in the MEMORY module–
and RWBUF–the sort defining the memory buffer that handles the results of
the read/write instructions in WhileFun. The context update sorts command
keeps from the memory-stack sorts only the sorts that produce context changes,
as we describe next, in Section 4.2.

4.2 Context-updates synthesis

The synthesis of a set O of constructs that may produce context-updates relies
on the hyper-tree constructed for the operators in C and is similar with the side-
effects synthesis described in Section 3.2 and [24]. The difference here is the fact
that at the leaves level we now use a different memory policy (the memory-stack
policy) to filter the paths leading to context-updates. The algorithm implement-
ing this in Chisel is defined by the operator traverseHypertree given in Fig. 2:

The operator in Fig. 2 computes the set of basic syntactic language constructs
that may be context-updates, by inspecting the conditions and the right-hand
side of each rewrite rule in C represented here as Q, i.e., the rule label. The
operator unfolds the rewrite rules into the hyper-tree T with children nodes rep-
resenting lists of rules that unify with subterms of Q’s conditions (each subterm of
Q unifies with a particular node). The traversalHypertree operator goes hori-
zontally in T if there is no subtree rooted in the current Q node. Otherwise, when
Q is the root of a subtree in T (e.g., when the rule Q is conditional), the traversal
goes vertically via the operator traverseCond. The traversalHypertree oper-
ator assigns each rule label Q to a particular set, either orange or olive, where
these sets are defined as follows:

orangeSet := {Q ∈ nodes(T) | ∃Q′ ∈ subtree(Q, T) : Q′ ∈ ContextUpdates}
oliveSet := {Q ∈ nodes(T) | ∀Q′ ∈ subtree(Q, T) : Q′ /∈ ContextUpdates}

The orangeSet contains Qs that are the root of a subtree containing context-
updates while oliveSet is context-updates free. Note that the termination of

Context-Updates Analysis and Refinement in Chisel 11

op traverseHypertree : Module QidSet TermList ContextUpdates HypertreeTraversalResult
-> HypertreeTraversalResult .

eq traverseHypertree(M, none, TL, CU, HTR) = HTR .
ceq traverseHypertree(M, Q ; QS, TL, CU, HTR) = traverseHypertree(M, QS, TL, CU, HTR’)
if Q in CU /\

HTR’ := add2orange(Q, HTR) .
ceq traverseHypertree(M, Q ; QS, TL, CU, HTR) = traverseHypertree(M, QS, TL, CU, HTR)
if traversed?(Q, HTR) .

ceq traverseHypertree(M, Q ; QS, TL, CU, HTR) =
if allOrange?(HTR’) and not emptyHypernode(M, COND, (T, TL))
then add2orange(Q, HTR’)
else add2olive(Q, HTR’)
fi

if COND := getCondition(M,Q) /\ not Q in CU /\ not traversed?(Q,HTR) /\ T := getLHS(M,Q) /\
HTR’ := traverseCond(M, COND, (T, TL), CU, setAllOrangeVar(true, HTR)) .

op traverseCond : Module Condition TermList ContextUpdates HypertreeTraversalResult
-> HypertreeTraversalResult .

eq traverseCond(M, nil, TL, CU, HTR) = setAllOrangeVar(false, HTR) .
eq traverseCond(M, T = T’ /\ COND, TL, CU, HTR) = traverseCond(M, COND, TL, CU, HTR) .
eq traverseCond(M, T := T’ /\ COND, TL, CU, HTR) = traverseCond(M, COND, TL, CU, HTR) .
eq traverseCond(M, T : S /\ COND, TL, CU, HTR) = traverseCond(M, COND, TL, CU, HTR) .
ceq traverseCond(M, T => T’ /\ COND, TL, CU, HTR) = combineHypernodes(HTR’, HTR’’)
if TV := freshTerm(T) /\

QS := getRulesUnifying(M, TV, getRls(M), TL) /\
HTR’ := traverseHypertree(M, QS, TL, CU, HTR) /\
HTR’’ := traverseCond(M, COND, TL, CU, setAllOrangeVar(true, HTR’)) .

Fig. 2. The traverseHypertree operator in Chisel.

the algorithm in Fig. 2 is ensured by the fact that the specification S has a finite
number of rules, and that any rule in T that was already added to either orange
or olive set is not unfolded anymore. We give next an example that provides
the intuition about the synthesis process.

CallF→ AsR→ Inc1→ Inc2→ SdE→ IfR1→ . . . → WriteR→ ReadR1→ReadR2

−→ < , > −→ asgP1→asgP2 −→ | −→ < , , , >

rmv1→rmv2 −→ |

Fig. 3. The hyper-tree constructed for WhileFun.

Example 2. The first part of the hyper-tree TWhileFun, constructed for WhileFun
semantics, is depicted in Fig. 3. The memory-stack operator discovered here at
the leaves level is | that is obtained by the explicit memory-stack policy. The
root of TWhileFun contains the language constructs C where we show first CallF

the rule label that specifies the semantics of a function call such as:

12 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

crl [CallF] :

< Call fn(actPrms), st, rwb, fs > => < skip, st’’, rwb’, fs >

if fn(Prms){ C } fs’ := fs /\

< actPrms, st > => vals /\

st’ := assignPrms(actPrms, Prms, st | mt) /\

< C, st’, rwb, fs > => < skip, st’’ | lenv’, rwb’, fs > .

The first condition in the rule CallF extracts the function definition from
the function set fs by means of a matching condition; the second condition
evaluates the arguments passed to the function; the third condition uses the
function assignPrms (described below) to bind the parameters to the values
previously obtained; and the fourth condition evaluates the body of the function
in the new stack of environments.

op assignPrms : ExpL VarL ESt -> ESt .

eq [asgP1] : assignPrms(nv, nv, ro) = ro .

eq [asgP2] : assignPrms((N,EL), (X,VVs), mu | ro) =

assignPrms(EL, VVs, mu | remove(ro, X) (X = N)) .

The function assignPrms is in charge of assigning the appropriate values to
the parameters of a function call. It receives a list of expressions, a list of vari-
ables, and a stack of environments as arguments and traverses the lists removing
the previous value associated to the variable at the top of the stack and binding
it to the new one.

4.3 Context-updates refinement

For the refinement step we use a modified version of the Maude testing tool
presented in [23], which generates test cases for Maude functional modules and
executes these tests while checking the conformance of their result w.r.t. a given
specification ϕ. In our case, ϕ is defined over the execution trace as defined next.

Given the programming language semantics S and a program p, which is
associated in S with a term with a tree representation Tp, we define Lp the
flattening of p into a list of instructions (i.e., unit elements in C) obtained by
the preorder traversal of Tp (i.e., the listing of the program’s code instructions).
Given a set of execution traces E we denote its elements by $, i.e., an execution
path of p w.r.t. S. Furthermore, we denote by π the filtering of $ w.r.t. the
language constructs C. We use the standard notation for π, namely |π| represents
the length of the path, while πi, i ∈ {0, . . . , |π|}, represents the i-th element of
the path. Note that π0 is ε, the empty execution list. We also denote by [Lp]fn
the set function definitions in p:

{Lp(k)..Lp(k + n− 1) | Lp(k) ∈ Cfn and (Lp(k + n) ∈ Cfn or Lp(k + n) = ε)
and ∀i = k + 1..k + n− 1 : Lp(i) /∈ Cfn}

where Lp(i) represents the i-th element of the list Lp and Cfn is the set of program
constructs representing function declarations.

Context-Updates Analysis and Refinement in Chisel 13

Definition 1. The property ϕ w.r.t. E is defined as follows:

∀ς ∈ O, ∀$ ∈ E, π := filterC($), ∀i ∈ 1..|π| : πi = ς =⇒
(πi−1πi ∈ Lp =⇒ ς ∈ Or)∧
(πi−1πi /∈ Lp ∧ (πi−1, πi) ∈ [Lp]fn) =⇒ ς ∈ Og)∧
(πi−1πi /∈ Lp ∧ (πi−1, πi) /∈ [Lp]fn) =⇒ ς ∈ Of)

Hence the three sets Of (the function call constructs), Og (the goto con-
structs), and Or (the residue constructs) are obtained from O by a discrimina-
tion process based on the analysis of testing traces. Namely, the residues Or are
constructs that execute always in programs’ sequential order; the gotos Og and
function calls Of are constructs that break the sequential order for either jump-
ing inside the current function body, or to another function, respectively. Note
that if the sets Or, Og, and Of do not form a partition we use the remaining
elements in O to signal counterexamples for the context-updates inference phase.
In the next section we describe the benchmark tests we used for the experimental
semantics WhileFun and MIPS.

5 Experiments in Chisel

We apply Chisel, extended with the synthesis algorithm for context-updates on a
standard benchmark for real-time systems called PapaBench [21]. We consider, in
our experimental evaluation, both formal semantics of WhileFun and MIPS. Pa-
paBench is a code snapshot extracted from an actual real-time designed for Un-
manned Aerial Vehicle (UAV). It consists of two communicating applications, a
command management called fly by wire and a navigation management called
autopilot. Both applications have a number of inter-dependent tasks which are
executed in a control loop, at different frequencies. Structurally, fly by wire has
five tasks, named from T1 to T5 and autopilot has eight tasks, from T6 to T13.
Moreover, each application serves three interrupts, which are not of concern for
the current tool evaluation. The tasks are summarized in Fig. 4 (left) and their
inter-dependencies shown in the same figure (right). PapaBench application has
two modes–manual and automatic. In the manual mode, the radio command
(T1) of fly by wire is executed, sending data (T2) to autopilot which ana-
lyzes and sends back information (T6, T7, T8) to fly by wire for processing
and issuing commands (T3, T4). The automatic mode is triggered in autopilot

by the GPS communication (T9) and enables navigation, altitude and climb
control (T10, T11, T12) before stabilization (T7). T5 of fly by wire and T13
of autopilot handle failure checking and respectively parameter reporting.

PapaBench is organized in modes and tasks, coordinated by a set of global
variables. We apply Chisel on two programming levels: the original imperative
code and the binary code obtained after disassembling. In this way we aim to
study the analyzability and traceability properties of PapaBench, e.g., isolate
and quantify different functionalities within each task, as well as the inter-task
behavior between communicating tasks. We report the results of Chisel as reduc-

14 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

Tasks : fbw and autopilot

T1 - receive radio commands

T2 - send data to autopilot

T3 - receive data from autopilot

T4 - transmit servos

T5 - check failsafe

T6 - manage radio commands

T7 - control stabilization

T8 - send data to fbw

T9 - receive gps data

T10 - control navigation

T11 - control altitude

T12 - control climb

T13 - manage reporting

Fig. 4. PapaBench: The tasks and their dependencies

Name # Funs # Calls LOC red (%) LOC red (%)
(WhileFun) (WhileFun) (MIPS) (MIPS)

scheduler fbw 14 18 103 72.8 % 396 44.4 %

periodic auto 21 80 225 73.3 % 779 36.3 %

fly by wire 41 110 638 91.1 % 1913 41 %

T1 10 26 119 76.5 % 534 36.2 %

T2 9 9 59 69.5 % 329 44.4 %

T3 9 24 82 76.5 % 501 43.6 %

T4 9 14 50 61.5 % 235 34.5 %

T5 7 22 66 67 % 453 51 %

autopilot 95 214 1384 92 % 5639 41.5 %

T6 36 71 306 77.2 % 1329 54 %

T7 9 13 57 70 % 426 42 %

T8 7 15 54 69.2 % 219 38 %

T9 15 30 87 75 % 617 36.5 %

T10 18 27 102 71.1 % 1002 42.2 %

T11 3 2 15 63.4 % 90 70.6 %

T12 4 3 49 66.2 % 363 50 %

T13 37 93 240 79.7 % 1535 42 %

Fig. 5. Chisel performance on PapaBench benchmark

tion in the number of instructions (LOC). Next, we elaborate on experimentation
(i.e., platform, organization, test cases) and its results, as summarized in Fig. 5.

Context-Updates Analysis and Refinement in Chisel 15

We conduct our experiments on the following settings: we run Chisel with
Maude (and Full-Maude) 2.7 on a MacBook Pro 2.5 GHz, 4GB RAM, with Pa-
paBench version 0.4 (for the WhileFun code) and the gcc 4.7.1 cross-compiler
to obtain MIPS code (and with sufficient traceability to check the corresponding
program slices at the high- and low-levels).

We organize the benchmark as follows, in Fig. 5: each of the 13 tasks (the rows
T1 to T13), the core functionalities of fly by wire and autopilot (the rows
scheduler fbw and periodic auto), and the complete PapaBench benchmark
(the rows fly by wire and autopilot). These latter four functionalities were
introduced in [26] and included here for completion purposes. Note that in [26]
the context-updates were manually introduced for each language while here we
detect them automatically. The context-updates synthesis phase produces exact
results for WhileFun while for MIPS the overapproximation at the synthesis
phase is too large (the synthesized context-updates for MIPS include most of the
language instructions). Hence, the testing phase, which is underapproximating
the synthesized context-updates, is essential for context-updates in MIPS. We
employ random testing on the currently described benchmarks and we reduce
the context-updates for MIPS to the exact set. Hence, the results reported in
the Fig. 5 coincide with the results obtained in [26] where the context-updates
were manually provided. We quantify the number of functions and function calls
(columns #Funs and respectively #Calls), the code size (LOC) and the slicing
reduction factor, red(%) for both WhileFun and MIPS programs.

The reduction factor captures the slicing performance w.r.t., the original code
on both WhileFun and MIPS variants. We measure the slicing performance in
the following way:

- The rows with the full benchmark (autopilot and fly by wire) and its core
functionalities (scheduler fbw and periodic auto): the slicing procedure
considers as slicing criteria sets of global variables used to activate modes
and inter-task communication. The red(%) shows the reduction percentage
resulting from program slices size over the reference (original) code size.

- The rows corresponding to each task T1 to T13 (with the exception of
T11–control altitude–which is very small, but included for completeness pur-
poses): the slicing procedure is based on 7 slicing criteria designed to measure
several aspects of a task code. These criteria correspond to:
1- global functionality, i.e., variable(s) responsible for the task functionality;

2,3- mode split, i.e., global and local variable(s) related to modes involved in
the task main function;

4- inter-tasks parameters, i.e., variable(s) that emphasize the communica-
tion between tasks in Fig. 4 (e.g., T5-T4 for T5, T2-T6-T1-T3 for T2);

5- global params. impact, i.e., global variable(s) used in performing the re-
spective task functionality;

6- effect on inter-procedural behavior, i.e., global impact of function calls;
7- effect on the communication for control navigation and climb tasks (T10

and T12) and arrays to measure the penalty incurred when transform-
ing array operations into function calls (for T1-T9 and T13), and local
impact of specific function calls.

16 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

Chisel, when applied on WhileFun programs performs well, partly because
of the inter-procedural analysis and partly because the code structure is mode-
based. The results for WhileFun are reported in Fig. 5 (column red(%)WhileFun).
On the other hand, we report lower percentages for MIPS code, as shown in Fig. 5
(column red(%)MIPS) because of several reasons. First, the current version of
Chisel does not follow through the memory addresses. Second, any function call
in a small sized function involves setting the function stack with registers global
and stack pointer, which end-up dominating the code size and yielding longer
slices. Third, as reported in [31], in general slicing binary code could result in
longer slices because of the indirect side-effects via register flags. However, Chisel
slicing on MIPS code stays generic and it is work in progress to employ a slic-
ing procedure specialized for low-level languages to produce more precise slices.
Using the criteria 6- and 7-, we measure the improvement of an inter-procedural
analysis for MIPS that amounts to an additional 20%-25% reduction.

PapaBench is used to evaluate the worst-case execution time (WCET) anal-
ysis and to experiment different scheduling models. In these contexts and with
respect to the considered benchmark, we used the program slices computed with
Chisel for several purposes. For example, we perform the intersection of program
slices obtained on criteria such as functionality modes and we identify what are
the shared and/or individual behaviors as well as communication patterns at the
code level (in particular on WhileFun code). Also, we use the program slices to
discover the computationally intensive modes which in turn would impact the
task scheduling and the accuracy of the WCET analysis. In this latter case, it is
a well-known WCET estimation technique to evaluate the code generated from
synchronous designs in two phases: the initialization and the rest.

6 Concluding remarks and future work

In this paper we have presented a generic synthesis method for context-updates
constructs, from given semantics of programming languages written in Maude.
The synthesis strategy follows three stages: the memory policy, the context-
updates overapproximations, and the overapproximation refinement. We also
integrated our method in Chisel, a Maude tool that can perform generic pro-
gram slicing. We experimented our extended Chisel with different semantics:
WhileFun (imperative) and MIPS (assembly), both of them with different varia-
tions, e.g., different memory models and data flow styles. We have also designed
test programs to evaluate the efficiency of the produced slices. These experi-
ments correspond to Unmanned Aerial Vehicle applications, which prove that
this technique can be applied to real-time programs. Note that for the moment
we use these benchmarks in the refinement step.

As ongoing work we focus on a more complex strategy for the refinement step
by using more evolved testing strategies. For future work, we plan to extend the
language with pointers, hence supporting more complex memory policies based
on a more refined memory model. Finally, our aim is to introduce concurrency

Context-Updates Analysis and Refinement in Chisel 17

in the framework so that we can cover and test out proposed methodology on a
larger and significant class of programming languages.

References

1. H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, 1985.

2. M. Alpuente, D. Ballis, F. Frechina, and J. Sapina. Combining runtime checking
and slicing to improve Maude error diagnosis. In Logic, Rewriting, and Concur-
rency, volume 9200 of LNCS, pages 72–96. Springer, 2015.

3. I. M. Asavoae, M. Asavoae, and A. Riesco. Towards a formal semantics-based
technique for interprocedural slicing. In iFM 2014, volume 8739 of LNCS, pages
291–306. Springer, 2014.

4. G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum. CodeSurfer/x86-
a platform for analyzing x86 executables. In CC, volume 3443 of LNCS, pages
250–254. Springer, 2005.

5. D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo. ORBS: Language-
independent program slicing. In FSE14, pages 109–120, 2014.

6. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

7. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude, volume 4350 of LNCS. Springer, 2007.

8. S. Danicic and M. Harman. Espresso: A slicer generator. In SAC, pages 831–839,
2000.

9. A. Farzan, F. Chen, J. Meseguer, and G. Rosu. Formal analysis of Java programs
in JavaFAN. In CAV, pages 501–505, 2004.

10. J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In POPL, pages
379–392. ACM Press, 1995.

11. J. Field and F. Tip. Dynamic dependence in term rewriting systems and its appli-
cation to program slicing. Information & Software Technology, 40(11-12):609–636,
1998.

12. S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing. In ISSTA, pages 133–144. ACM, 2006.

13. N. Heintze and J. G. Riecke. The slam calculus: Programming with secrecy and
integrity. In POPL, pages 365–377, 1998.

14. M. Hennessy. The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. John Wiley & Sons, 1990.

15. J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth. Slicing droids: program
slicing for smali code. In SAC, pages 1844–1851. ACM, 2013.

16. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c:
A software analysis perspective. Formal Asp. Comput., 27(3):573–609, 2015.

17. W. B. Langdon, S. Yoo, and M. Harman. Inferring automatic test oracles. In
ICSE, pages 5–6, 2017.

18. S. Lucas, J. Meseguer, and R. Gutierrez. Extending the 2D dependency pair
framework for conditional term rewriting systems. In LOPSTR, volume 8981 of
LNCS, pages 113–130, 2014.

19. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

18 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

20. J. Meseguer and G. Rosu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007.

21. F. Nemer, H. Casse, P. Sainrat, J. P. Bahsoun, and M. D. Michiel. Papabench: a
free real-time benchmark. In WCET, 2006.

22. T. Petricek, D. A. Orchard, and A. Mycroft. Coeffects: a calculus of context-
dependent computation. In ICFP, pages 123–135, 2014.

23. A. Riesco. Test-case generation for Maude functional modules. In T. Mossakowski
and H. Kreowski, editors, WADT, volume 7137 of LNCS, pages 287–301. Springer,
2010.

24. A. Riesco, I. M. Asavoae, and M. Asavoae. A generic program slicing technique
based on language definitions. In WADT 2012, volume 7841 of LNCS, pages 248–
264, 2013.

25. A. Riesco, I. M. Asavoae, and M. Asavoae. Memory policy analysis for seman-
tics specifications in Maude. In LOPSTR, volume 9527 of LNCS, pages 293–310.
Springer, 2015.

26. A. Riesco, I. M. Asavoae, and M. Asavoae. Slicing from formal semantics: Chisel.
In FASE, pages 374–378, 2017.

27. G. Rosu and T. F. Serbanuta. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

28. V. Rusu, D. Lucanu, T. Serbanuta, A. Arusoaie, A. Stefanescu, and G. Rosu.
Language definitions as rewrite theories. Journal of Logical and Algebraic Methods
in Programming, 85(1):98–120, 2016.

29. S. K. Sahoo, J. Criswell, C. Geigle, and V. S. Adve. Using likely invariants for
automated software fault localization. In ASPLOS, pages 139–152. ACM, 2013.

30. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
New York Univ. Comput. Sci. Dept., New York, NY, 1978.

31. V. Srinivasan and T. W. Reps. An improved algorithm for slicing machine code.
In OOPSLA, pages 378–393, 2016.

32. J. Talpin and P. Jouvelot. The type and effect discipline. In LICS, pages 162–173,
1992.

33. T. Teitelbaum. CodeSurfer. ACM SIGSOFT Software Eng. Notes, 25(1):99, 2000.
34. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,

3(3):121–189, 1995.
35. A. Verdejo and N. Marti-Oliet. Executable structural operational semantics in

Maude. Journal of Logic and Algebraic Programming, 67:226–293, 2006.
36. M. Weiser. Program slicing. In ICSE, pages 439–449. IEEE Press, 1981.

	Context-Updates Analysis and Refinement in Chisel

