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Program Verification with Separation Logic

Radu Iosif

CNRS/VERIMAG/Université Grenoble Alpes
Radu.Iosif@univ-grenoble-alpes.fr

Abstract. Separation Logic is a framework for the development of modular pro-
gram analyses for sequential, inter-procedural and concurrent programs. The first
part of the paper introduces Separation Logic first from a historical, then from a
program verification perspective. Because program verification eventually boils
down to deciding logical queries such as the validity of verification conditions,
the second part is dedicated to a survey of decision procedures for Separation
Logic, that stem from either SMT, proof theory or automata theory. Incidentally
we address issues related to decidability and computational complexity of such
problems, in order to expose certain sources of intractability.

1 How it all Started

Separation Logic [Rey02] is nowadays a major paradigm in designing scalable mod-
ular verification methods for programs with dynamic memory and destructive pointer
updates, which is something that most programs written using imperative languages
tend to use. The basic idea that enabled the success, both in academia and in industry, is
the embedding of a notion of resource within the syntax and proof system of the logic,
before it’s now widely accepted semantics was even defined.

Resources are understood as items, having finite volume, that can be split (sepa-
rated) among individuals. Since volumes are finite, splitting reduces the resources in a
measurable way and cannot be done ad infinitum. The story of how resources and sep-
aration ended up in logic can be traced back to Girard’s Linear Logic [Gir87], the first
one to restrict the proof rules of weakening and contraction in natural deduction:
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With them, the sequents I', @ -y and I', @, @ - @ can be deduced one from another, but
without them, they become unrelated. Removing the (W) and (C) rules leads to two
distinct conjunction connectives, illustrated below by their introduction rules:
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While A is the classical conjunction, for which (W) and (C) apply, * is a new separating
conjunction, for which they don’t [OP99].



In natural deduction, conjunction and implication are intertwined, the following
introduction rule being regarded as the definition of the implication:
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The connection is given by the fact that the comma on a sequent’s antecedent is inter-
preted as conjunction. However, if now we have two conjunctions, we must distinguish
them in the antecedents, and moreover, we obtain two implications:
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We use semicolumn and comma for the classical and separating conjunctions, while
— and — denote the classical and separating implications, respectively. Antecedents
are no more viewed as sets but as trees (bunches) with leaves labeled by propositions
and internal nodes labeled with semicolumns or commas. Furthermore, (— I) leads
to consumption of antecedent nodes and cannot be applied indefinitely. This is where
resources became part of the logic, before any semantics was attributed to it.

2 Heaps as Resources

Since the most expensive resource of a computer is the memory, it is only natural to
define the semantics of the logic (initially called BI, for Bunched Implications) with
memory as the resource. There are several memory models and the one on the lowest
level views memory as an array of bounded values indexed by addresses.

However, the model which became widespread is the one allowing to reason about
the shape (topology) of recursive data structures. In this model, the memory (heap) is
viewed as a graph, where nodes represent cells and edges represent pointers between
cells, and there is no comparison between cells, other than equality.

This new logic, called Separation Logic (SL), is equipped with equality and two
atomic propositions, emp for the empty heap and x — (yi,...,yx) meaning that x is
the only allocated memory address and there are exactly k pointers from x to yi,...,Vx,
respectively. From now on, k is a strictly positive parameter of the logic and SL* denotes
the set of formulae generated by the grammar below:

@:=_L|T|emp|x=y|x—= 1,....%) | QAQ | ~Q|0*xQ|@—¢|Ix. 0@

SL* formulae are interpreted over SL-structures I = (46,5,6), where 4l is a countable
set, called the universe, the elements of which are called locations, s : Var — U is a
mapping of variables to locations, called a store and § : U —4, 4K is a finite partial
mapping of locations to k-tuples of locations, called a heap. We denote by dom(bh)
the domain of the heap §. A cell ¢ € 4l is allocated in I if ¢ € dom(h) and dangling
otherwise.

The notion of separable resources is now embedded in the semantics of SL. Two
heaps b and b, are disjoint if and only if dom(h;) Ndom(h,) = 0, in which case b Wh,



denotes their union (& is undefined for non-disjoint heaps). A heap b is a subheap of
b’ if and only if ' = hWh”, for some heap h”. The relation (i, 5,6H) = @ is defined
inductively below:

(t,5,h) = emp <h=0

(LLs,b) ):x = (y17--~7)7k) b= {<5(x)7 (5(y1>7"'75(yk)>>}

(,5,5) E @1 %2 &> there exist disjoint heapshy, i, such that h = hy Why
and (5. bh;) E@;, fori=1,2

(s, h) E o =@ < for all heaps b’ disjoint from b such that (84,5,5") = @1,

we have (4,5, Wh) = @

The semantics of equality, boolean and first-order connectives is the usual one and thus
omitted. The question is now what can be expressed in SL and what kind of reasoning’
could be carried out?

First, one defines a single (finite) heap structure up to equality on dangling cells.
This is done considering the following fragment of symbolic heaps:

Mi=xry|x#y [ ATl
Li=emp|x— (yi,...,0) [Z1% X2

The IT formulae are called pure as they do not depend on the heap. The X formulae are
called spatial. A symbolic heap is a conjunction X ATl, defining a finite set of heaps.

For instance, x — (y1,y2) *y1 — (x,y2) Ay # y2 defines cyclic heaps of length two,
in which x and y; are distinct, x points to y, y; points to x and both point to y,. Further,
y2 is distinct from yj, but could be aliased with x. Observe that x — (y;,y2) *xy; —
(x,y2) Ax =y is unsatisfiable, because x — (y1,y2) and y; — (x,y,) define separated
singleton heaps, in which x ~ y; is not possible.

However, being able to define just bounded heaps is not satisfactory, because one
needs to represent potentially infinite sets of structures of unbounded size, such as the
ones generated during the execution of a program. Since most imperative programmers
are used to working with recursive data structures, a natural requirement is using SL to
define the usual recursive datatypes, such as singly- and doubly-linked lists, trees, etc.
It turns out that this requires inductive definitions. For instance, the following inductive
definitions describe an acyclic and a possibly cyclic list segment, respectively:

E(x,y) —empAxxy V o(xxy)Adz. x> 7% E(z,y) acyclic list segment from x to y
Is(x,y) «—empAxay V Ju.x+— uxls(u,y) list segment from x to y

Intuitively, an acyclic list segment is either empty, in which case the head and the tail
coincide [emp A x = y], or contains at least one element which is disjoint from the
rest of the list segment. Observe that x — z and E(Z,y) hold over disjoint parts of the
heap, which ensures that the definition unfolds producing distinct cells. The constraint
—(x~2y), in the inductive definition of E, captures the fact that the tail of the list segment
is distinct from every allocated cell in the list segment, which ensures the acyclicity
condition. Since this constraint is omitted from the definition of the second (possibly
cyclic) list segment Is(x,y), its tail y is allowed to point inside the set of allocated cells.

! We use the term “reasoning” in general, not necessarily push-button automated decision.



As usual, the semantics of inductive definitions is given by the least fixed point of
a monotone function between sets of finite SL-structures. To avoid clutter, we omit this
definition, but point out that the reasons why symbolic heaps define monotone functions
are that (i) *’s do not occur negated, and (ii) —’s are not used.

In fact, one may wonder, at this point, why only *’s are used for specification of
data structures and what is the rdle of — in reasoning about programs? The answer is
given in the next section.

3 Program Verification

Program verification means providing a proof for the following problem: given a pro-
gram P and a set of states P, is there an execution of P ending in a state from W? More
concretely, W can be a set of “bad” states in which the program ends after attempting to
dereference an unallocated pointer variable, or after leaking memory. A program proof
consist in annotating the program with assertions that (i) must hold each time the con-
trol reaches an assertion site, such that (ii) the set ¥ is excluded from the reachable
states of P.

Ensuring the point (i) requires proving the validity of a certain number of Hoare
triples of the form {6} C {y}, each of which amounts to proving the validity of an
entailment ¢ = pre(C, ), or equivalently, post(C,0) = y, where pre and post are the
weakest precondition and the strongest postcondition predicate transformers. Such en-
tailments are called verification conditions.

In the seminal papers of Ishtiaq and O’Hearn [IO01] and Reynolds [Rey02], SL was
assigned the purpose of an assertion logic in a Hoare-like logic used for writing correct-
ness proofs of pointer-manipulating programs. This turn from proof theory [OP99] to
program proofs removes a long-standing thorn from the side of Hoare logicians, namely
that the substitution-based assignment rule {¢[E/x]} x =E {0} [Hoa69] is no longer
valid in the presence of pointers and aliasing.

The other problems, originally identified in the seminal works of Floyd [Flo67] and
Hoare [Hoa69] are how to accomodate program proofs with procedure calls and concur-
rency. Surprisingly, the * connective provides very elegant solutions to these problems
as well, enabling the effective transfer of this theory from academia to industry.

In general, writing Hoare-style proofs requires lots of human insight, essentially for
(i) infering appropriate loop invariants, and (ii) solving the verification conditions ob-
tained from the pre- or postcondition calculus that captures the semantics of a straight-
line program. With SL as an assertion language, automation is possible but currently at
(what we believe are) the early stages.

For instance, the problem (i) can be tackled using abstract interpretation [CC79],
but the (logical) abstract domains currently used are based on the hardcoded Is(x,y)
predicate, making use of specific properties of heaps with a single pointer field, that are
composed of lists, and which can be captured by finitary abstractions [BBH06]. An
extension to nested lists (doubly-linked lists of ... of doubly-linked lists) has been since
developped in the SPACEINVADER tool [BCCT07] and later shipped to industry in the
INFER tool [CD11].



Alternatives to invariant inference using fixed point computations are also possible.
These methods use the expressive power of the higher-order inductive definitions of SL
and attempt to define inductive predicates that precisely define loop invariants, using
only a single symbolic execution pass through the loop [LGQC14]. The difficulty of
the verification problem is then shipped to the decision procedure that solves the verifi-
cation condition thus obtained (ii). This is probably the real problem standing in front of
the researchers that aim at developping a fully push-button program verification method
for real-life programs, based on SL. We shall survey this issue at large in §4

3.1 While Programs

Perhaps the longest lasting impression after reading Ishtiaq and O’Hearn’s paper [1001]
is that a sound and complete weakest precondition calculus for programs with pointers
and destructive updates has finally been found. But let us first recall the problem with
Hoare’s substitution-based assignment rule. Consider the triple

{(y.data=2Ax=y)[l/x.data]} x.data:=1 {y.data=2Ax =y}

which is the same as {y.data =2Ax =y} x.data:=1 {y.data=2Ax =y} because
the substitution has no effect on the precondition. The triple is clearly invalid, because
the assignment x.data := 1 makes the assertion x.data = 2 false.

The solution provided by SL is of great simplicity and elegance. Since pointer up-
dates alter a small part of the heap, we can “remove” this part using * and “replace” it
with an updated heap, using —, while requiring that the postcondition hold afterwards:

B33y us (xy)# (U (v,y) = 0)} ul:=v {0}

where u.1 := v denotes the assignment of the first selector of the cell referred to by u to
v. We have a similar weakest precondition for memory allocation, where we adopt the
more structured object-oriented constructor cons(v,w) instead of C’s malloc(n):

{¥x. (x = (v,w)) = ¢[x/u]} u:= cons(v,w) {0}

Observe that this calculus produces preconditions that mix % and — with quanti-
fiers. Very early, this hindered the automation of program proofs, because at the time,
there was no “automatic theorem prover which can deal with the form of these asser-
tions (which use quantification and the separating implication)” [BCOO0S]. This issue,
together with a rather coarse undecidability result for quantified SL formulae [CYOO01]
made researchers almost entirely forget about the existence of — and of the weakest
precondition calculus, for more than a decade. During this time, program verifiers used
(and still do) incomplete, overapproximating, postcondition calculi on (inductive def-
initions on top of) x-based symbolic heaps. In the light of recent results concerning
decision procedures for the base assertion SL language, we believe this difficulties can
be overcome. A detailed presentation of these results is given in §4.1.

Before going further, an interesting observation can be made. The weakest pre-
condition of a straight-line program, in which more than one such statement occurs
in a sequence, would be a formula in which first-order quantifiers occur within the



scope of a separating connective. This could potentially be problematic for automated
reasoning because, unlike first order logic, SL formulae do not have a prenex form:
O« Vx . y(x) ZVx. o+ y(x) and ¢ — Ix . y(x) #Z Ix . 0 — y(x). However, the follow-
ing notion of precise formulae comes to rescue in this case [OYRO04]:

Definition 1. A SL formula ¢ is precise if and only if, for all SL-structures I = (1,5, 5)
there exists at most one subheap ©' of by such that (4,s,5") = o.

If ¢ is precise, we recover the equivalences ¢ x Vx . y(x) = Vx . ¢ xy(x) and ¢ —
Ix . y(x) = 3x . & = y(x). Moreover, since formulae such as x — (y,z) are precise, one
can hoist the first-order quantifiers and write any precondition in prenex form. As we
shall see (§4.1) prenexisation of formulae is an important step towards the decidability
of the base assertion language.

3.2 Local Reasoning and Modularity

Being able to provide easy-to-write specifications of recursive data structures (lists,
trees, etc.) as well as concise weakest preconditions of pointer updates, were the first
salient features of SL. With separating conjunction * as the main connective, a principle
of local reasoning has emerged:

To understand how a program works, it should be possible for reasoning and specifi-
cation to be confined to the cells that the program actually accesses. The value of any
other cell will automatically remain unchanged [ORY01 ].

The rdle of the separating conjunction in local reasoning requires little explanation.
If a set of program states is specified as @ =\, and the update occurs only in the @ part,
then we are sure that y is not affected by the update and can be copied from pre- to
postcondition as it is. This is formalized by the following frame rule:

{e} P {0}
{9y} P {o+y}
where modifies(P) is the set of variables whose value is changed by the program P,
defined recursively on the syntactic structure of P.

The frame rule allows to break a program proof into small pieces that can be speci-
fied locally. However, locality should not be confounded with modularity, which is the
key to scalability of program verification technique. Indeed, most large, industrial-size
programs are built from a large number of small components, such as functions (proce-
dures) or threads, in a concurrent setting.

By a modular program verification we understand a method capable of inferring
specifications of any given program component in isolation, independently on the con-
text in which the other components interact with the component’s environment. Then
the local specifications are combined into a global one, using the frame rule or a variant
thereof. Observe that this is not to be mixed up with program verification algorithms
that store and reuse analysis results.

An example of modular program verification with SL is the compositional shape
analysis based on the inference of footprints [CDOYO07]. These are summaries specified

modifies(P) Nvar(y) =0



as pairs of pre-/postconditions, that guarantee absence of implicit memory faults, such
as null pointer dereferences or memory leaks. The important point is that footprints can
be inferred directly from the program, without user-supplied pre- or postconditions.

Combining component footprints into a global verification condition is the other
ingredient of a modular verification technique. Since footprints are generated with-
out knowledge of their context, sometimes their combination requires some ‘“‘adjust-
ment”. To understand this point, consider an interprocedural analysis in which a func-
tion foo(x,y) is invoked at a call site. The summary of the function, inferred by footprint
analysis, is say Is(x,z) xIs(y, nil), using the previously defined inductive predicates (§2).
Informally, this sais that there is a list segment from x to z and disjointly a nil-ending
list starting with y. Assume further that x — z is the assertion at the call site. Clearly
x — z does not entail Is(x,z) x Is(y, nil), in which case a classical interprocedural analy-
sis would give up.

However, an SL-based interprocedural analysis uses the frame rule for function
calls and may reason in the following way: find a frame ¢ such that x+—z* ¢ =
Is(x,z) *Is(y,nil). In this case, a possible answer (frame) is ¢ = Is(y, nil). If the cur-
rent precondition of the caller of foo(x,y) is @, we percolate the frame all the way up
to the caller and modify its precondition to @ * ¢, as local reasoning allows us to do.
This method is implemented by the INFER analyzer and is used, on an industrial scale,
at Facebook [CD11].

This style of modular verification introduces abductive reasoning as a way to per-
form frame inference. In classical logic, the abduction problem is: given an assumption
¢ and a goal , find a missing assumption X such that ¢ AX = . Typically, we aim at
finding the weakest such assumption, which belongs, moreover, to a given language (a
disjunction of conjunctive assertions pertaining to a restricted set). If we drop the latter
requirement, about the allowed form of X, we obtain the weakest solution X = ¢ — .

Abductive reasoning in SL follows a very similar pattern. An abduction problem
is: given assertions ¢ and W, find an assertion X such that ¢ x X = y. Similar to the
classical case, the weakest solution, in this case is ... X = ¢ — y! So the long-forgotten
magic wand comes back to program analysis, this time by way of abduction. However,
since decision procedures for SL still have a hard time in dealing with —, they use
underapproximations of the weakest solutions, that are mostly good enough for the
purposes of the proof [CDOY11].

4 Decision Procedures

As mentioned in the introduction of §3, the job of a verifier is turning a program verifi-
cation problem into a (finite) number of logical entailments of the form ¢ = , called
verification conditions. In this section, we survey how one can establish the validity of
such entailments, provided that ¢ and y are SL formulae.

If the fragment of SL to which ¢ and y belong is closed under negation, the entail-
ment ¢ =  is valid if and only if the formula ¢ A — is unsatisfiable. Usually negation
is part of basic SL assertions, that do not use inductive definitions. These are mostly
discussed in §4.1. In this case, we reduce the entailment to a satisfiability problem, that
ultimately, can be solved using SMT technology.



If the logic in which ¢ and y are written does not have negation, which is typically
the case of inductive definitions built on top of symbolic heaps, we deal with entail-
ments directly, either by proof-theoretic (we search for a sequent calculus proof of the
entailment) or automata-theoretic (we reduce to the inclusion between the languages of
two automata) arguments. The pros and cons of each approach are discussed in §4.2.

4.1 Basic Logic

Let us consider the language SL* given in §2. For k > 2, undecidability of this logic
occurs even if separating connectives are almost not used at all. If one encodes an
uninterpreted binary relation R(x,y) as 3z . z+— (x,y) = T, undecidability occurs as a
simple consequence of Trakhtenbrot’s result for finite satisfiability of first-order logic
[BGGI7]. If k = 1, the logic is still undecidable, but the fragment of SL! without —
becomes decidable, with a nonelementary recursive complexity lower bound [BDL12].

On the other hand, the quantifier-free fragment of SL* is PSPACE-complete, for
any k > 1 [CYOO1]. The crux of this proof is a small model property of quantifier-
free SLX. If a formula ¢ in this language has a model (81,5, ) then it has a model where
[|5]| = O(size(9)). This also provides effective algorithms for the satisfiability problem.
It is possible, for instance, to encode the quantifier-free SL* formula in first-order logic
with bitvectors and use existing SMT technology for the latter [CGHOS5], or directly
using a DPLL(T)-style algorithm that attempts to build a model of bounded size and
learns from backtracking [RISK16].

The quantifier-free fragment of SL* is also important in understanding the expres-
siveness of SL, relative to that of classical first- and second-order logics. This point
addresses a more fundamental question, relative to the presence of the separating con-
nectives * and —«: is it possible to reason about resources and separation in first-order
logic, or does one need quantified relations, as the heap semantics of SL¥ suggests?

It turns out that, surprisingly, the entire prenex fragment of SL can be embedded
into uninterpreted first-order logic. This is the set of formulae Q1x; ... Qpx, . 0, where
0 is quantifier-free. First, we consider a small set of patterns, called fest formulae, that
use * and — in very restricted ways:

Definition 2. The following patterns are called test formulae:

x> (Vo) Exs (1) * T U|>n% ~(T > =(|h| >n)), neN
alloc(x) € x s (x,....x) L |p|>|U|-nE |h|>n+1—=xLneN
N—_——
k times
|h| > n—1%x—emp, ifn>0
h>n< T, ifn=0

L, ifn=co
and x ~ y, where x,y € Var, y € Var* and n € N., is a positive integer or oo.

Observe first that — is instrumental in defining allocation without the use of existential
quantifiers, as in alloc(x) i A R (¥1,---,yk) * T. Second, it can express



cardinality constraints relative to the size of the universe |U| > n and |h| > |U| —n,
assuming that it is finite.

In contrast with the majority of the literature on Separation Logic, here the universe
of available memory locations (besides the ones occurring in the heap, which is finite)
is not automatically assumed to be infinite. In particular, the finite universe hypothesis
is useful when dealing with bounded memory issues, for instance checking that the
execution of the program satisfies its postcondition, provided that there are sufficiently
many available memory cells. Having different interpretations of the universe is also
motivated by a recent integration of SL* within the DPLL(T')-based SMT solver CVC4
[RISK16,RIS17], in which the SL theory is parameterized by the theory of locations,
just like the theories of arrays and sets are parameterized by theories of values.

A first nice result is that any quantifier-free SL* formula is equivalent to a boolean
combination of test formulae [EIP18b]. Then we can define an equivalence-preserving
translation of the quantifier-free fragment of SL* into FO. Let d be a unary predicate
symbol and let §; (for i = 1, ..., k) be unary function symbols. We define the following
transformation from quantified boolean combinations of test formulae into first order
formulae:

a
o
[

O(x~y) Exry
O(x = (y1,--,30)) = 2(x) A AL v ~ filx)

O(alloc(x)) &f o(x)
0(~9) = -0(6)
O(01902) = O(01)0O(¢s)  ifec{A,V, =4}
O(Qr.9) € Qx.0(0) ifQe{d v}

O(U| >n) € 3x,...,x, . distinct(xy, ..., x,)

Ok > n) & 3x,...,x, . distinct(xy, ..., x,) A AL, 0(x7)

(|a] > U] =n) < 3. iy Nyy 7 x: = ()

As a result of this translation, any formula of the prenex fragment of SL¥ is equiv-
alent to a first-order formula that uses one monadic predicate and £ monadic function
symbols. Thus, we obtain the decidability of the prenex fragment of SL! as a conse-
quence of the decidability of first-order logic with one monadic function symbol and
any number of monadic predicate symbols [BGG97]. Moreover, for k > 2, undecid-
ability occurs even for the quantifier prefix of the form 3*V*, if universally quantified
variables occur under the scope of —«. However, if this is not the case, 3*V* fragment
of SL¥ becomes PSPACE-complete [EIP18b].

Interestingly, if k = 1 again, the 3*V* fragment is PSPACE-complete independently
of how —« is used [EIP18a]. This result points out the difference between the prenex
fragment of SL! and SL! with unrestricted use of quantifiers, which is undecidable: in
fact, the full second-order logic can be embedded within it [BDL12]. For program ver-
ification, the good news is that, as discussed in §3, the prenex fragment is closed under
weakest preconditions, making it possible to verify straight-line programs obtained by
loop unfolding, a la Bounded Model Checking.



4.2 Inductive Definitions

Let us now turn to the definition of recursive data structures using inductive definitions
in SL*. As a first remark, the base assertion language is usually that of symbolic heaps
Y ATI, where X is either emp or a finite x-conjunction and I is either T or a nonempty
conjunction of equalities and disequalities between variables. A system of inductive
definitions is a set of rules of the form p(x¢) <— ZAIIx p;(X1)*... py(X,), where w.l.o.g.
X0, - . ., X, are pairwise disjoint sets of variables and var(X A IT) C U, x;. The examples
below show the inductive definitions of a doubly-linked list dll(hd, p,tl,n) and of a tree
with linked leaves tll(root, Il, Ir), respectively:

dli(hd,p,tl,n) < hd s (n,p) Ahd = tI
dli(hd, p,tl,n) < 3x . hd > (x, p) *dll(x, hd, tI, n)

p‘— \ - \——— . —— +n
" - —~

tll(root, Il,Ir) <— root — (nil, nil,Ir) Aroot = I
tll(root, Il,Ir) <= J13r3z . root — (I,r, nil) xtl(1,1l,2) « tl(r,z,Ir)

niI
&nil nil
@Q}g}@r

A solution of an inductive predicate system is a mapping of predicates to sets of
SL-structures and the semantics of a predicate p, denoted [[p]] corresponds to the set
of structures assigned to it by the least solution of the system. The entailment problem
is given a system and two predicates p and g, does [[p]] C [[g]] hold? In general, this
problem is undecidable [AGH™ 14,IRV14].

Automata-based Techniques As usual, we bypass undecidability by defining a num-
ber of easy-to-check restrictions on the system of predicates:

— Progress: each rule allocates exactly one node, called the root of the rule. This
condition makes our technical life easier, and can be lifted in many cases — rules
with more than one allocation can be split by introducing new predicates.

— Connectivity: for each inductive rule of the form X py (x1) *...* p,(x,) AT there
exists at least one edge between the root of the rule and the root of each rule of p;,
for all i € [1,n]. This restriction prevents the encoding of context-free languages in
SL, which requires disconnected rules, leading to undecidability.

— Establishment: all existentially quantified variables in a recursive rule are eventu-
ally allocated. This restriction is not required for the satisfiability problem, but it is
essential for entailment.



The fragment of SL obtained by applying the above, rather natural, restrictions, is de-
noted Sl in the following. The proof of decidability for entailments in SLyy, relies
on three main ingredients:

1. for each predicate p in the system, all heaps from the least solution [[p]] are repre-
sented by graphs, whose treewidth is bounded by a linear function in the size of the
system.

2. we define, for each predicate p, a formula @, in monadic second-order logic (MSO)
of graphs whose models are exactly the graphs encoding the heaps from the least
solution [[p].

3. the entailment problem [[p]] C [[¢] is reduced to the satisfiability of an MSO formula
@, A—d,. Since all models of p (thus of ®,) have bounded treewidth, this problem
is decidable, by Courcelle’s Theorem [Cou90].

This approach suggests that a direct encoding of the least solution of a system of
inductive definitions is possible, using tree automata. That is, for each predicate p,
we define a tree automaton A, that recognizes the set of structures from [[p], and the
entailment problem [[p] C [¢]] reduces to a language inclusion problem between tree
automata L(A,) C L(Ag).

However, there are instances of the entailment problem that cannot be directly
solved by language inclusion between tree automata, due to the following polymor-
phic representation problem: the same set of states can be defined by two different
inductive predicates, and the tree automata mirroring their definitions will report that
the entailment does not hold. For example, doubly-linked lists can also be defined in
reverse:

dlley(hd, n,tl,p) = hd > (p,n) Ahd =t V Ix . tl — (x,n) #dlley (hd, I, x, p)

A partial solution is to build tree automata only for a restriction of SLy,, called
the local fragment (SLj,.). The structures that are models of predicates defined in this
fragment have the following nice property: whenever the same structure is encoded
by two different spanning trees, the two trees are related by a rotation relation, which
changes the root to an arbitrary internal node, and the orientation of the edges from
the path to the root to that node. We can thus check [[p] C [¢] in this fragment by
checking the inclusion between A, and A", where A[’I‘” is automaton recognizing the
closure of the languge of A, under rotation. Moreover, since the rotation closure of a
tree automaton is possible in polynomial (quadratic) time, the entailment problem for
SLjoc can be shown to be EXPTIME-complete [IRV14]. It is still an open question,
whether this tight complexity bound applies to the entire SLy logic.

Proof-based Techniques An experimental evaluation of SL inductive entailment solvers,
carried out during the SL-COMP 2014 solver competition [SC14], shows the strengths
and weaknesses of automata-based versus proof-based solvers. On one hand, automata-
based solvers can cope with polymorphic representations in a much better way than
proof-based solvers, which require complex cut rules, whose completness is far from
being understood [CJT15].

On the other hand, proof-based solvers are more flexible in deadling with extensions
of the base theory (symbolic heaps), such as arbitrary equalities and disequalities or
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even (limited forms of) data constraints. Moreover, they can easily interact with SMT
solvers and discharge proof obligations belonging to the base logic. However, as the
example below shows, this requires quantifiers.
Consider a fragment of the inductive proof showing that any acyclic list segment is
also a list segment, given below:
Is(z,y) FIs(z,y) —(x=y)Ax—zFEJu
y by instantiation u <— z

—(x%y)/\tz*E(z,y) F3u.x— uxls(u,y) Vemp Ax =
Is(x, ) - Is(x,)

The bottom inference rule introduces one of the two cases produced by unfolding the
inductive definitions on both sides of the sequent’. The second inference rule is a re-
duction of the sequent obtained by unfolding, to a sequent matching the initial one (by
renaming z to x), and allows to close this branch of the proof by an inductive argument,
based on the principle of infinite descent [BDP11].

The simplification applied by the second inference above relies on the validity of the
entailment —(x &~ y) Ax +— z = Ju . x — u, which reduces to the (un)satisfiability of the
formula —(x &~ y) Ax+> zAVu . —x+— u. The latter falls into the prenex fragment, defined
by the 3*V* quantifier prefix, and can be proved unsatisfiable using the instantiation of
the universally quantified variable u with the existentially quantified variable z (or a
corresponding Skolem constant). In other words, this formula is unsatisfiable because
the universal quantified subformula asks that no memory cell is pointed to by x, which
is contradicted by x — z. The instantiation of u that violates the universal condition is
u < z, which is carried over in the rest of the proof.

This example shows the need for a tight interaction between the decision procedures
for the (quantified) base logic SL* and the entailment provers for systems of inductive
definitions built on top of it. An implementation of an inductive prover that uses SMT
technology to simplify sequents is INDUCTOR [Ser17], which uses CVC4 [BCD*11]
for the reduction step. Just like the CYCLIST prover [BGP12] before, INDUCTOR is
based on the principle of infinite descent [BDP11].

Future plans for INDUCTOR involve adding cut rules that would allow dealing with
polymorphic representations of recursive data structures in a proof-theoretic fashion, as
well as dealing with theories of the data within memory cells.

5 Conclusions

This paper surveys Separation Logic, a logical framework used to design modular and
local analyses for programs that manipulate pointers and dynamically allocated mem-
ory cells. The essence of the logic is a notion of separable resource, which is embedded
in the syntax and the proof system of the logic, before its nowadays widely accepted
semantics was adopted. Program verifiers based on Separation Logic use local reason-
ing to model the updates in a compact way, by distinguishing the parts of the heap

2 The second case emp Ax =yt Ju . x — u* Is(u,y) Vemp Ax &y is trivial and omitted for
clarity.
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modified from the ones that are unchanged. The price to be paid for this expressivity
is the difficulty of providing push-button decision procedures for it. However, recent
advances show precisely what are the theoretical limits of decidability and how one can
accomodate interesting program verification problems within them.
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