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Abstract. Star-topology decoupling is a state space search method recently in-
troduced in AI Planning. It decomposes the input model into components whose
interaction structure has a star shape. The decoupled search algorithm enumerates
transition paths only for the center component, maintaining the leaf-component
state space separately for each leaf. This is a form of partial-order reduction,
avoiding interleavings across leaf components. It can, and often does, have expo-
nential advantages over stubborn set pruning and unfolding. AI Planning relates
closely to model checking of safety properties, so the question arises whether de-
coupled search can be successful in model checking as well. We introduce a first
implementation of star-topology decoupling in SPIN, where the center maintains
global variables while the leaves maintain local ones. Preliminary results on sev-
eral case studies attest to the potential of the approach.

1 Introduction

AI Planning develops algorithms that, given an initial state s0 (an assignment to a vector
of state variables), a goal formula G, and a set A of actions (transition rules), find an
action sequence that transforms s0 into a state s s.t. s |= G. In other words, AI Planning
addresses reachability checking in compactly described transition systems. This relates
closely to model checking of safety properties, a well-known connection (e.g. [3, 6, 27–
29]) that has been exploited to transfer techniques. In the context of the SPIN model
checker [24], AI Planning heuristic search methods have been adapted to SPIN [9, 10],
and compilations from Promela to AI Planning languages have been designed [8].

Here we adapt a new method from AI Planning, star-topology decoupling [14, 15],
to model checking. Contrary to other methods developed in AI, which typically aim
at finding solution paths quickly, the major strength of star-topology decoupling lies
in proving unreachability: in a model checking setting, verifying correctness of safety
properties. We provide a first implementation in SPIN, and initial empirical results.

Star-topology decoupling decomposes the input problem into components identified
by a partition of state variables. Two components interact if there is an action reading or
updating state variables from both of them. Star-topology decoupling chooses compo-
nents whose interactions take a star shape, where there is a center component to which
all interactions are incident. All other components are then referred to as leaves. Given
such a topology, the leaves depend only indirectly on each other, via the center. The
decoupled search algorithm exploits this through a two-level search, where only the



center is considered at the primary level, while each leaf is considered separately at the
secondary level. Multiplication of states across leaf components is avoided.

Star-topology decoupling relates to partial-order reduction (e.g. [37, 32, 19, 12, 34]),
in that it avoids interleavings of leaf paths. It can be viewed as a variant of unfolding,
exploiting star shapes by organizing the unfolding in terms of transition paths over
the center, which ensures by design that there are no cross-leaf conflicts. Star-topology
decoupling can have exponential advantages over other partial-order reduction methods.
Consider the following excerpt of Gnad and Hoffmann’s [15] results:

Benchmark # Exp SSS Unf STD Exp SSS Unf STD
Elevators 100 21 17 3 41 1,941.8 1,941.5 543.3 36.3
Logistics 63 12 12 11 27 1,121.2 1,121.2 118.4 12.1
Miconic 150 50 45 30 145 154.6 152.3 143.1 .7
NoMystery 40 11 11 7 40 266.2 248.8 101.3 3.9
TPP 30 5 5 4 11 192.5 192.5 12.4 .2
Woodworking 100 11 20 22 16 109,174.4 199.9 1.2 4,274.2∑

(over all) 1144 202 196 123 435

Fig. 1. Left: #state spaces successfully exhausted in 30 minutes/4 GB memory. Right: State-
space representation size (#integer variables, in thousands, used in the final representation). Exp:
explicit-state search without enhancements. SSS: strong stubborn sets (as per [39]). Unf: unfold-
ing (using Cunf [34] given the presence of read arcs). STD: star-topology decoupling.

Here we observe that, in automata networks such as described in Promela, decou-
pled search can be applied by viewing “local” transitions, affecting only a single process
P , as being part of a leaf component P ; while viewing non-local transitions, affecting
more than one process, as being part of the center component. In the simplest case,
where processes communicate only via global variables, this takes the global variables
as the center and takes the local variables of each process as a leaf. But also more gen-
eral forms of communication, via channels, can be viewed in this way. The decoupled
search then explores non-local transitions at the primary level, and local transitions at
the secondary level. We supply initial empirical evidence suggesting that this form of
decomposition can be useful in the verification of safety properties.

2 Star-Topology Decoupling

We first describe star-topology decoupling in the context of AI Planning where it was
invented. We give a brief outline and refer to Gnad and Hoffmann [15] for details. In
Section 2.2, we prove correctness of star-topology decoupling for reachability checking.
Finally, we show complementarity to previous state-space reduction methods.

2.1 Decoupling in AI planning

An AI Planning task is a tuple (V,A, s0, G). V is a finite set of state variables v, each
with a finite domain Dv . A state s is an assignment to V and s0 is the initial state.
The goal G is a partial assignment to V , interpreted as a conjunctive formula where



sC0 = l

sC1 = r

sC2 = l

SL[sC0 ] = {(p1 = l)
loadp1 l
−−−−−→ (p1 = T ), . . . , (pn = l)

loadpn l−−−−−→ (pn = T )}

SL[sC1 ] = {(p1 = l), (p1 = T )
unloadp1 r
−−−−−−−→ (p1 = r), . . . , (pn = l), (pn = T )

unloadpn r−−−−−−−→ (pn = r)}

SL[sC2 ] = {(p1 = l), (p1 = T ), (p1 = r), . . . , (pn = l), (pn = T ), (pn = r)}

drivelr

driverl

Fig. 2. The decoupled state space of our transportation example, one decoupled state per row.
Center states and transitions are highlighted in blue. Transitions a l−→ b within a leaf state set are
used to illustrate that a new leaf state a becomes reachable via leaf action l. Dashed lines indicate
leaf states that remain reachable in the successor decoupled state (i.e., are compatible with aC ).

s |= (v, d) iff s(v) = d. A is a set of actions, each action a associated with two
partial assignments to V namely the precondition pre[a] and effect eff [a]. An action is
applicable to s if s |= pre[a]. If so, the outcome state of applying a in s, denoted sJaK,
is defined by sJaK(v) = eff [a](v) where eff [a] is defined, and sJaK(v) = s(v) where
not. The applicability and outcome sJπK of an action sequence π is defined accordingly.
The planning problem is to decide whether there exists π such that s0JπK |= G.

As an example, simple yet enough to show exponential separations from previous
methods, say that V = {t, p1, . . . , pn} where t encodes the position of a truck on a map
with two locations l, r; and each pi encodes the position of a package. We have Dt =
{l, r} and Dpi = {l, r, T} where T stands for being in the truck. In s0, all variables
have value l. The goal is to bring all packages to r, i.e., G = {(p1, r), . . . , (pn, r)}.
The actions drive, e.g. drivelr with precondition {(t, l)} and effect {(t, r)}; or load a
package, e.g. loadp1l with precondition {(t, l), (p1, l)} and effect {(p1, T )}; or unload
a package, e.g. unloadp1r with precondition {(t, r), (p1, T )} and effect {(p1, r)}. The
decoupled state space of the example, which we define next, is illustrated in Figure 2.

Let P = {P1, P2, . . . } be a partitioning of V , i.e.
⊎

Pi∈P Pi = V . Consider the
undirected graph with vertices P and an arc (P1, P2) for P1 6= P2 if there exists a ∈ A
s.t. the set Va of variables touched by a (defined in either pre[a] or eff [a]) intersects
both P1 and P2. We say that P is a star-topology decomposition if there exists a unique
C ∈ P s.t. all arcs in the graph are incident on C. In that case, C is the center and all
other L ∈ P are leaves. In the example, P = {{t}, {p1}, . . . , {pn}} is a star-topology
decomposition with center C = {t} and leaves Li = {pi}.

Refer to value assignments to C as center states sC , and to value assignments to a
leaf L as leaf states sL. These are the atomic composites of the search graph built by
decoupled search. The search starts with the center state sC0 := s0|C . It then augments
sC0 with a full exploration of leaf states reachable given sC0 : it iteratively applies all leaf
actions aL, affecting only some L, where sC0 |= pre[aL]|C . Denote the set of all sL

reached this way by SL[sC0 ]. Then sC0 together with SL[sC0 ] forms a decoupled state. In
the example, sC0 = {(t, l)} and SL[sC0 ] = {(pi, l), (pi, T ) | 1 ≤ i ≤ n}. Observe that,
given the star-topology decomposition, the leaves do not interact with each other, so



any combination of leaf states sL1 , . . . , sLn ∈ SL[sC0 ] is jointly reachable. Intuitively,
fixing the center, the leaves – which interact only via the center – become independent.

Given a decoupled state (sC , SL[sC ]), the successor center states rC are those
reached from sC by some center action aC , affecting C, that is applicable: sC |=
pre[aC ]|C , and for every leaf L there exists sL ∈ SL[sC ] s.t. sL |= pre[aC ]|L. Each
such rC reached by aC is added to the search graph. Then rC is augmented into a decou-
pled state by 1) selecting from SL[sC ] the subset SL[sC , aC ] of leaf states compatible
with aC , and 2) setting SL[rC ] to be all leaf states reachable from rC and SL[sC , aC ].

The goalG is reached if, for some decoupled state (sC , SL[sC ]) in the search graph,
sC |= G|C and for every leaf L there exists sL ∈ SL[sC ] s.t. sL |= G|L.

In the example, the only successor center state of (sC0 , S
L[sC0 ]) is sC1 = {(t, r)}

reached by the center action aC = drivelr. We get SL[sC1 ] = {(pi, l), (pi, T ), (pi, r) |
1 ≤ i ≤ n}, because 1) all sL ∈ SL[sC0 ] are compatible with drivelr, and 2) given
sC1 we can unload each package at r. Thus the goal is reached in the decoupled state
(sC1 , S

L[sC1 ]). The complete decoupled state space S of the task containes a third de-
coupled state (sC2 , S

L[sC2 ]) that results from applying driverl in (sC1 , S
L[sC1 ]).

2.2 Correctness of decoupling for reachability analysis

Given the star-topology decomposition, any decoupled state (sC , SL[sC ]) generated
this way represents exactly the states s reachable in the original task using the same
center-action sequence πC that led to (sC , SL[sC ]). Those s are exactly the ones where
s|C = sC and, for every leaf L, s|L ∈ SL[sC ]. In particular, the goal is reachable in
decoupled search iff it is reachable in the original task. When the goal is reached in
(sC , SL[sC ]), a solution can be extracted by backchaining from the leaf states G|L ∈
SL[sC ]. Duplicate decoupled states can be pruned, so exploring the set of reachable
decoupled states in any order leads to a finite decoupled search space S. In consequence,
star-topology decoupling guarantees correctness for reachability checking:

Theorem 1. Star-topology decoupling captures reachability exactly, i.e., a state s is
reachable in a task iff there exists a decoupled state in S in which s is represented. A
path to s can be extracted in time linear in |S|. Checking if a conjunctive property c is
reachable in S is linear in the number of decoupled states.

Proof (sketch). Every decoupled state (sC , SL[sC ]) captures exactly those states that
are reachable via the center-action subsequence πC that led to (sC , SL[sC ]). Thus,
all states reachable in the task are represented by a decoupled states in S. A path to
an s in (sC , SL[sC ]) can efficiently be obtained by augmenting πC with leaf action
sequences for each leaf component by backchaining from the leaf states that compose
s. Reachability of a conjunctive property c in a decoupled state is done by checking, for
each partition P separately, if the projection of c onto P is reached. ut

The full proofs are available in Gnad and Hoffmann [15].



2.3 Complementarity from other methods

Several other methods relate to star-topology decoupling in that they can also lead to
exponential reductions in search effort. Decoupling can still be exponentially more ef-
ficient, as our transportation example shows:

There are exactly three reachable decoupled states: the initial state (sC0 , S
L[sC0 ]), its

successor (sC1 , S
L[sC1 ]) from drivelr, plus the only successor of (sC1 , S

L[sC1 ]), reached
via driverl (which differs from (sC0 , S

L[sC0 ]) because (pi, r) is reached for each pi).
The separation into partial component states may be reminiscent of abstraction

methods, which over-approximate the set of reachable states given one such component
(e.g. [4, 7, 22, 23]). Star-topology decoupling is very different, partitioning the variables
to avoid enumerating combinations of independent leaf component assignments. Given
this particular structure, star-topoloy decoupling captures reachability exactly.

The search space under strong stubborn set (SSS) pruning has size exponential in
the number of packages. This is because an SSS on the initial state must include a
loadpil action to make progress to the goal, must include drivelr as that interferes
with loadpil, and must then include all other loadpj l actions as these interfere with
drivelr. So all subsets of packages that may be loaded at l are enumerated.

In unfolding, the non-consumed preconditions of load actions on the truck position
induce read arcs. Both ways of encoding these (consuming and producing the truck
position, or place replication) result in an unfolding enumerating all subsets of loaded
packages. In contextual Petri nets that support read arcs natively [2], the same explosion
arises in the enumeration of “event histories”.

Symmetry breaking (e.g. [35, 11, 13, 33, 5]) is complementary to star-topology de-
coupling, simply because the leaf partitions do not need to be symmetric. In our exam-
ple, where the leaves are symmetric, even perfect symmetry breaking keeps track of the
number of packages at every location, enumerating all possible combinations.

3 Implementation in SPIN

We implemented star-topology decoupling in the most recent version of SPIN (6.4.7).
We focus on reachability properties only (more general properties are a topic for future
work). Our current implementation is preliminary in that it does not handle the full
Promela language accepted by SPIN itself. We specify the handled fragment below. Let
us first describe the star-topology decomposition and the modified search algorithms.

In Promela models, a star-topology decomposition arises directly from the formu-
lation as interacting processes. Each process becomes a leaf component on its own; but
anything that affects more than a single process is grouped into the center component.
Concretely, each of the statements st in a process type t corresponds to either a local
transition, affecting only local variables or advancing the process location; or a global
transition, namely a channel operation, a statement that affects a global variable, or a
run command invoking a new process. Then the instantiations of t can be made leaf
processes if t contains at least one local transition. All remaining processes, global
variables, as well as channels, together form the center component. This partitioning
ensures that every interaction across processes involves the center component. Center



and leaf states are defined as assignments to the respective parts of the model, and
center (resp. leaf) transitions are ones that affect the center (resp. only that leaf). The
annotation of statements to become leaf or center transitions is done fully automatic.

Our implementation of decoupled search is minimally intrusive. We keep SPIN’s
current state now to store the center state sC . Alongside now , we maintain a data
structure storing the associated set SL[sC ] of reached leaf states. The decoupled search
algorithm is then adopted as follows. The primary search only branches over center
transitions, i.e., center processes and center transitions in leaf processes. We loop over
SL[sC ] to determine the center transitions enabled by the reached leaf states. A center
transition tC applied to a decoupled state (sC , SL[sC ]) can have updates on leaf pro-
cesses, so we need to compute the set SL[sC , tC ] as before, and apply the leaf updates
of tC to the states in that set. Afterwards, SL[sC , tC ] is augmented by all reachable
leaf states to obtain the successor decoupled state (rC , SL[rC ]). We perform duplicate
checking over decoupled states, testing the center states first to save runtime.

The remaining issue with our implementation is SPIN’s parsing process. Due to
the generation of model-specific code, the distinction between local (leaf) and global
(center) transitions cannot be identified anymore within the verifier itself, but must be
identified at Promela level. SPIN’s parsing process must be extended to identify the
leaf-vs-center information, and to communicate that to the verifier. Currently, our imple-
mentation supports this for assignments, conditions, basic control constructs (do. . .od,
if. . .fi), all unary and binary operators, channel operations (send/receive, both syn-
chronous and buffered), and run commands. We do not yet support timeout, unless,
and channel polling statements (empty/full/. . . ), nor the process constraints priority
and provided, nor more complex constructs like c-code and inline. For atomic
and d step sequences, we handle basic compounds of statements, series of conditions,
assignments, and channel operations, but not more complex control flows.

Regarding the relation to other search methods used in SPIN, partial-order reduc-
tion is orthogonal, and potentially exponentially worse, as we have already shown in
the planning context. The same is true of statement merging, which can only reduce the
number of states local to a process, merging statements that only touch local variables.
It cannot merge statements that have conditions on global variables, and thus cannot
tackle the exponential search space size in our transportation example. Similar argu-
ments apply to reduction methods based on τ -confluence (e.g. [21, 20]). Note also that
leaf transitions, while local to a process, may be relevant to the property being checked
(e.g. be part of a conjunctive reachability property as in planning).

4 Experiments

We performed experiments on several case studies, selected to suit the Promela frag-
ment we can currently handle, and selected to showcase the potential of star-topology
decoupling. We emphasize that the experiments are preliminary and we do not wish
to make broad claims regarding their significance. Our implementation and all models
used in the below are available at https://bitbucket.org/dagnad/decoupled-spin-public.

We run the scalable variant of Peterson’s Mutex algorithm from Lynch [31], an
elevator control model developed by Armin Biere and used as benchmark in several



papers (e.g. [9, 10]), the X.509 protocol from Jøsang [26], and a client-server commu-
nication protocol. The latter is a toy example we created for the purpose of this study, as
a simple pattern to highlight the kind of structure relevant to star-topology decoupling.
The model consists of a server process handling requests from a scalable number of
client processes. Communication is via two channels. In star-topology decoupling the
clients become leaf components, and the technique is beneficial if there is local content
within each client. To show this, we experiment with two variants, EmptyC where the
clients do nothing other than communicating with the server, and NonEmptyC where
each client increments a local variable from 0 to 1. For illustrative purposes, we also
include the transportation planning example described earlier. Modeling this in Promela
is straightforward. We scale the number of packages from 1 to 50.

We compare our decoupled-search SPIN (STD) to SPIN 6.4.7 with standard set-
tings, providing no additional command line options (SPIN), and to a configuration dis-
abling statement merging (-M) and partial-order reduction (-POR). All configurations
exhaust the entire state space, using the verifier options -A -E. Restricting ourselves
to safety properties, we removed any never claims from the models. We use runtime
(memory) limits of 60 min (32 GB). Figure 3 shows the results, scaling each case study
until all configurations run out of memory (indicated by a “-”).

STD works very well in Peterson, significantly reducing memory consumption and
runtime. To a lesser extent, STD also has advantages in Elevator and X.509. In Client-
Server, as expected STD is beneficial only if there is local content in the clients. In
the transportation case study adopted from planning, STD excels. This is not a relevant
observation in model checking per se, but points to the power star-topology decoupling
may in principle have over previous search methods in SPIN.

The number of decoupled states is consistently smaller than the number of states in
SPIN (and, e.g., by 2 orders of magnitude in Peterson). Where the reduction is relatively
small, it is outweighed by the runtime overhead of handling decoupled states. Regarding
the search depth, keep in mind that the maximum depth of STD is that of the center
transitions only. The depth bound can, thus, in general be kept significantly smaller for
STD, leading to a reduced memory consumption for the search stack.

5 Conclusion

Star-topology decoupling is a novel approach to reduce state space size in checking
reachability properties. Our implementation in SPIN is still preliminary, but exhibits
encouraging performance on some case studies. As work in the planning domain has
already shown, star-topology decoupling is orthogonal to, and may have exponential
advantages over, partial-order reduction, symmetry breaking, symbolic representations,
and heuristic search. It can also be fruitfully combined with all of these [18, 17, 16, 15].

We believe that the technique’s application to model checking is promising, and
we hope that our preliminary study will have an impact in this direction. Foremost,
more realistic case studies are required. Client-server architectures, and concurrent pro-
grams under weak memory constraints (e.g. [25, 30, 36, 1]), carry promise insofar as
such models might exhibit relevant local structure to be exploited in leaf components:



SPIN -M -POR SPIN Star-topology decoupling (STD)
Model Time Mem #S D Time Mem #S D Time Mem #S D
Peterson 3 0.04 0.13 33434 6924 0 0.13 2999 615 0 0.13 274 120

4 19 1.14 8886434 1703147 0.53 0.21 533083 165342 0.1 0.13 6698 1615
5 - - - - 124 10.08 76620358 25309679 4.16 0.27 153548 27392
6 - - - - - - - - 157 4.79 3503908 473228

Elevator 3 0.23 0.14 99057 4609 0.12 0.13 78284 4950 0.06 0.13 7081 590
4 3.15 0.19 685169 29487 1.49 0.17 498676 30239 0.42 0.16 37095 1643
5 15.5 0.44 3620470 28638 5.02 0.33 2354211 27634 2.38 0.26 115077 1630
6 95.7 1.86 18813600 30818 26.7 1.13 10868993 29712 7.35 0.65 359163 1728
7 676 10.31 97574250 32998 153 5.56 49636481 31790 25.5 2.08 1119285 1826
8 - - - - 782 26.62 224704000 33868 95.5 7.51 3483243 1924
9 - - - - - - - - 360 27 10825893 2022

X.509 1.58 0.18 403311 91 0 0.13 3054 57 0 0.13 1090 35
Client- 6 0.72 0.15 141312 16235 0.08 0.13 32296 6830 0.15 0.14 13128 755
Server- 7 4.84 0.21 745472 63236 0.42 0.15 143741 27442 0.74 0.19 51037 1607
EmptyC 8 31.3 0.59 3801088 263835 2.05 0.24 507967 104759 3.3 0.42 192464 3297

9 199 2.83 18874368 1062399 8.53 0.44 2206702 370926 14.6 1.36 708597 6274
10 1160 12.38 91750400 4252067 35 1.66 8140911 1277049 63.2 5.34 2558800 13414
11 - - - - 149 4.45 29856762 4335070 256 21.11 9093557 28150
12 - - - - 609 21.06 109424300 14937082 - - - -

Client- 5 2.69 0.18 450560 65354 0.05 0.13 23614 6209 0.04 0.13 3245 324
Server- 6 30.2 0.73 4816896 518833 0.33 0.15 132210 32645 0.21 0.15 13128 755
NonEmptyC 7 416 7.6 49545216 4256969 2.12 0.27 708019 172048 1.04 0.21 51037 1607

8 - - - - 14 0.74 3813278 882008 4.86 0.53 192464 3297
9 - - - - 83.8 3.79 19384754 4254923 20.4 1.87 708597 6274

10 - - - - 480 22.14 95568530 19967819 87.1 7.57 2558800 13414
11 - - - - - - - - 369 30.39 9093557 28150

Transport- 4 0.22 0.13 112735 329 0 0.13 31018 311 0 0.13 18 8
Planning 5 3.85 0.19 1240092 978 0.36 0.14 237249 892 0 0.13 21 9

6 47.8 0.95 13641019 2923 3.14 0.24 1815310 2698 0 0.13 24 10
7 728 12.8 150051220 8756 29 1.07 13954478 6404 0 0.13 27 11
8 - - - - 269 8.03 107967020 19740 0 0.13 30 12

50 - - - - - - - - 0.01 0.13 156 54

Fig. 3. Performance of SPIN with default options (SPIN), disabling statement merging (-M) and
partial-order reduction (-POR), and with star-topology decoupling (STD). We show runtime (in
seconds) and memory consumption (in GB), as well as the number of stored states (#S), and the
maximum search depth (D) reported by SPIN. Best runtime/memory is highlighted in bold face.

client/process parts that may read the server/shared memory state, and that may have
indirect effects thereupon, but that do not update it directly.

An important research challenge is the extension to liveness properties. This can be
approached by encoding the property that is to be checked as a finite automaton that is
added to the center component. We can then perform a lasso search in the decoupled
state space. This should work similar as in explicit state search, yet potentially leads to
more interaction between center and leaves, which has a negative influence on the per-
formance of star-topology decoupling. Further research topics include the combination
with other search techniques like (lossy) state compression, and application to other
model checking frameworks.

Acknowledgments. Daniel Gnad was partially supported by the German Research
Foundation (DFG), as part of project grant HO 2169/6-1, ”Star-Topology Decoupled
State Space Search”.
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