Skip to main content

Circuit-Based Search Space Pruning in QBF

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2018 (SAT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10929))

Abstract

This paper describes the algorithm implemented in the QBF solver CQESTO, which has placed second in the non-CNF track of the last year’s QBF competition. The algorithm is inspired by the CNF-based solver QESTO. Just as QESTO, CQESTO invokes a SAT solver in a black-box fashion. However, it directly operates on the circuit representation of the formula. The paper analyzes the individual operations that the solver performs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The implementation enables jumping across multiple levels by backtracking to the maximum level of variables in the core belonging to \(Q_i\).

  2. 2.

    This was also done similarly in Z3 when implementing [4].

References

  1. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI), pp. 275–281 (2005)

    Google Scholar 

  2. Balabanov, V., Jiang, J.-H.R., Scholl, C., Mishchenko, A., Brayton, R.K.: 2QBF: challenges and solutions. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 453–469. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_28

    Chapter  MATH  Google Scholar 

  3. Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. J. Satisfiability Bool. Model. Comput. (JSAT) 5(1–4), 133–191 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: International Conferences on Logic for Programming LPAR-20, Short Presentations, vol. 35, pp. 15–27. EasyChair (2015)

    Google Scholar 

  5. CQESTO website. http://sat.inesc-id.pt/~mikolas/sw/cqesto/res.html

  6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  7. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. In: Proceedings of the ACM on Programming Languages 2 (POPL), pp. 61:1–61:30, December 2017. https://doi.org/10.1145/3158149

    Article  Google Scholar 

  8. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-based QBF solving. In: Design, Automation & Test in Europe (DATE), pp. 811–814 (2013)

    Google Scholar 

  9. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 546–553 (2011)

    Google Scholar 

  10. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_10

    Chapter  Google Scholar 

  11. Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  12. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)

    Article  MathSciNet  Google Scholar 

  13. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_19

    Chapter  Google Scholar 

  14. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: International Joint Conference on Artificial Intelligence (IJCAI) (2015)

    Google Scholar 

  15. Janota, M., Marques-Silva, J.: An Achilles’ heel of term-resolution. In: Conference on Artificial Intelligence (EPIA), pp. 670–680 (2017)

    Chapter  Google Scholar 

  16. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Proceedings of BNP (Workshop) (2016)

    Google Scholar 

  17. Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press (2009)

    Google Scholar 

  18. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_12

    Chapter  Google Scholar 

  19. Manna, Z., Waldinger, R.: The Logical Basis for Computer Programming, vol. 2. Addison-Wesley, Reading (1985)

    Google Scholar 

  20. Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  21. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_19

    Chapter  Google Scholar 

  22. QBF Eval 2017 (2017). http://www.qbflib.org/event_page.php?year=2017

  23. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Formal Methods in Computer-Aided Design, FMCAD, pp. 136–143 (2015)

    Google Scholar 

  24. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by counterexample-guided instantiation. Formal Methods Syst. Des. 51(3), 500–532 (2017). https://doi.org/10.1007/s10703-017-0290-y

    Article  MATH  Google Scholar 

  25. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_24

    Chapter  Google Scholar 

  26. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic Part II (1968)

    Google Scholar 

  27. Tu, K.-H., Hsu, T.-C., Jiang, J.-H.R.: QELL: QBF reasoning with extended clause learning and levelized SAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 343–359. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_25

    Chapter  Google Scholar 

  28. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms. In: National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI) (2006)

    Google Scholar 

  29. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: International Conference On Computer Aided Design (ICCAD), pp. 442–449 (2002)

    Google Scholar 

Download references

Acknowledgments

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013. The author would like to thank Nikolaj Bjørner and João Marques-Silva for the helpful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikoláš Janota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janota, M. (2018). Circuit-Based Search Space Pruning in QBF. In: Beyersdorff, O., Wintersteiger, C. (eds) Theory and Applications of Satisfiability Testing – SAT 2018. SAT 2018. Lecture Notes in Computer Science(), vol 10929. Springer, Cham. https://doi.org/10.1007/978-3-319-94144-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94144-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94143-1

  • Online ISBN: 978-3-319-94144-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics