Skip to main content

HEVC Lossless Compression Coding Based on Hadamard Butterfly Transformation

  • Conference paper
  • First Online:
Book cover Wireless Algorithms, Systems, and Applications (WASA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10874))

  • 3974 Accesses

Abstract

Efficient video transmission has always been an important challenge in the field of computer networks. Elegant compression coding strategy will signicantly alleviate the heavy burden on network bandwidth. High Efficiency Video Coding (HEVC) is currently the newest video coding standard widely used in different fields, including lossy compression coding and lossless compression coding. In HEVC, each coding unit consists of a luma coding unit and a chromaticity coding unit. In this paper, a transformation based on Walsh-Hadamard butterfly transformation is applied to residuals of the luma coding block, and the element of the residual block is the difference between the frame brightness block and the reference pixel according to the prediction method. With the transformation proposed in this paper, the bits of residual coding can be effectively economized, and therefore, the bit rate of non-destructive coding transmission in frames can be reduced. Adaptively selecting between the proposed method and the direct residual transmission methods of HEVC itself effectively improves the performance of the coding. Experiment results show that compared with HM15.0, the bit rate of the videos is reduced for the five standard sequences.

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFB0801001 and Grant 2016YFB0801004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, S.T., Kuo, P.C., Li, B.D., Yang, J.F.: Efficient residual coding algorithm based on Hadamard transform in lossless H. 264/AVC. IET Image Process. 8(4), 194–198 (2013)

    Google Scholar 

  2. Heindel, A., Wige, E., Kaup, A.: Low-complexity enhancement layer compression for scalable lossless video coding based on HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(8), 1749–1760 (2017)

    Article  Google Scholar 

  3. Zhao, P., Liu, Y., Liu, J., Yao, R.: Perceptual rate-distortion optimization for H.264/AVC video coding from both signal and vision perspectives. Multimed. Tools Appl. 75(5), 2781–2800 (2016)

    Article  Google Scholar 

  4. Sbiaa, F., Kotel, S., Zeghid, M., et al: A selective encryption scheme with multiple security levels for the H.264/AVC video coding standard. In: Proceedings of the IEEE International Conference on Computer and Information Technology, pp. 391–398. IEEE (2016)

    Google Scholar 

  5. Sullivan, G.J., Ohm, J., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  6. Pitchaipillai, P., Eswaramoorthy, K.: H.264/MPEG-4 AVC video streaming evaluation of LR-EE-AOMDV protocol in MANET. J. Comput. Inf. Technol. 25(1), 15–29 (2017)

    Article  Google Scholar 

  7. Hong, S.W., Kwak, J.H., Lee, Y.L.: Cross residual transform for lossless intra-coding for HEVC. Sig. Process. Image Commun. 28(10), 1335–1341 (2013)

    Article  Google Scholar 

  8. Dey, B., Kundu, M.K.: Enhanced macroblock features for dynamic background modeling in H.264/AVC video encoded at low-bitrate. IEEE Trans. Circuits Syst. Video Technol. 28(3), 616–625 (2016)

    Article  Google Scholar 

  9. Niu, K., Yang, X., Zhang, Y.: A novel video reversible data hiding algorithm using motion vector for H.264/AVC. Tsinghua Sci. Technol. 22(5), 489–498 (2017)

    Article  Google Scholar 

  10. Gaj, S., Patel, A.S., Sur, A.: Object based watermarking for H.264/AVC video resistant to RST attacks. Multimed. Tools Appl. 75(6), 3053–3080 (2016)

    Article  Google Scholar 

  11. Song, L., Luo, Z., Xiong, C.: Improving lossless intra coding of H.264/AVC by pixel-wise spatial interleave prediction. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1924–1928 (2011)

    Article  Google Scholar 

  12. Wang, L.L., Siu, W.C.: Improved lossless coding algorithm in H.264/AVC based on hierarchical intra prediction. In: Proceedings of the IEEE International Conference on Image Processing, pp. 2009–2012 (2011)

    Google Scholar 

  13. Flynn, D., Marpe, D., Naccari, M., et al.: Overview of the range extensions for the HEVC standard: tools, profiles, and performance. IEEE Trans. Circuits Syst. Video Technol. 26(1), 4–19 (2015)

    Article  Google Scholar 

  14. Jeon, G., Kim, K., Jeong, J.: Improved residual DPCM for HEVC lossless coding. In: Proceedings of the IEEE Conference on Graphics, Patterns and Images, pp. 95–102 (2014)

    Google Scholar 

  15. Zhou, M., Gao, W., Jiang, M., Yu, H.: HEVC lossless coding and improvements. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1839–1843 (2012)

    Article  Google Scholar 

  16. Kim, K., Jeon, G., Jeong, J.: Piecewise DC prediction in HEVC. Sig. Process. Image Commun. 29(9), 945–950 (2014)

    Article  Google Scholar 

  17. Lee, Y.L., Han, K.H., Sullivan, G.J.: Improved lossless intra coding for H.264/MPEG-4 AVC. IEEE Trans. Image Process. 15, 2610–2615 (2006)

    Article  Google Scholar 

  18. Alvar, S.R., Kamisli, F.: On lossless intra coding in HEVC with 3-tap filters. Sig. Process. Image Commun. 47, 252–262 (2016)

    Article  Google Scholar 

  19. Zhang, M.F., Jia, H.U., Zhang, L.M.: Lossless video compression based on the time-space adaptive prediction. Comput. Eng. Sci. 26(10), 49–50 (2004)

    Google Scholar 

  20. Yang, K.H., Faryar, A.F.: A contex-based predictive coder for lossless and near-lossless compression of video. In: Proceedings of the International Conference on Image Processing, pp. 144–147 (2002)

    Google Scholar 

  21. Brunello, D., Calvagno, G., Mian, G.A., Rinaldo, R.: Lossless compression of video using temporal information. IEEE Trans. Image Process. 12(2), 132–139 (2003)

    Article  MathSciNet  Google Scholar 

  22. Sanchez, V., Aulí-Llinàs, F., Serra-Sagristà, J.: DPCM-based edge prediction for lossless screen content coding in HEVC. IEEE J. Emerg. Sel. Top. Circuits Syst. 6(4), 497–507 (2016)

    Article  Google Scholar 

  23. Choi, J.A., Ho, Y.S.: Efficient residual data coding in CABAC for HEVC lossless video compression. SIViP 9(5), 1055–1066 (2015)

    Article  Google Scholar 

  24. Wige, E., Yammine, G., Amon, P., et al: Pixel-based averaging predictor for HEVC lossless coding. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1806–1810. IEEE (2014)

    Google Scholar 

  25. Antony, A., Sreelekha, G.: HEVC-based lossless intra coding for efficient still image compression. Multimed. Tools Appl. 76(2), 1–20 (2015)

    Google Scholar 

  26. Gao, W., Jiang, M., Yu, H.: Binarization scheme for intra prediction residuals and improved intra prediction in lossless coding in HEVC. US, US9277211 (2016)

    Google Scholar 

  27. Tan, Y.H., Chuohao, Y., Zhengguo, L.: Lossless coding with residual sample-based prediction. JCTVC-K0157, 10–19 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, X., Huang, W., Guizani, M. (2018). HEVC Lossless Compression Coding Based on Hadamard Butterfly Transformation. In: Chellappan, S., Cheng, W., Li, W. (eds) Wireless Algorithms, Systems, and Applications. WASA 2018. Lecture Notes in Computer Science(), vol 10874. Springer, Cham. https://doi.org/10.1007/978-3-319-94268-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94268-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94267-4

  • Online ISBN: 978-3-319-94268-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics