Skip to main content

Visual Shoreline Detection for Blind and Partially Sighted People

  • Conference paper
  • First Online:
Computers Helping People with Special Needs (ICCHP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10897))

  • 3124 Accesses

Abstract

Currently existing navigation and guidance systems do not properly address special guidance aides, such as the widely used white cane. Therefore, we propose a novel shoreline location system that detects and tracks possible shorelines from a user’s perspective in an urban scenario. Our approach uses three dimensional scene information acquired from a stereo camera and can potentially inform a user of available shorelines as well as obstacles that are blocking an otherwise clear shoreline path, and thus help in shorelining. We evaluate two different algorithmic approaches on two different datasets, showing promising results. We aim to improve a user’s scene understanding by providing relevant scene information and to help in the creation of a mental map of nearby guidance tasks. This can be especially helpful in reaching the next available shoreline in yet unknown locations, e.g., at an intersection or a drive-way. Also, knowledge of available shorelines can be integrated into routing and guidance systems and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://google.com/maps.

  2. 2.

    https://openstreetmap.org.

  3. 3.

    https://www.stereolabs.com/zed/.

  4. 4.

    http://cvlibs.net/software/libviso/.

  5. 5.

    https://cvhci.anthropomatik.kit.edu/~dkoester/data/flowerbox.zip.

References

  1. Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJ. 69(4), 211–221 (2007). https://doi.org/10.1007/s10708-007-9111-y

    Article  Google Scholar 

  2. Zielstra, D., Zipf, A.: Quantitative studies on the data quality of OpenStreetMap in Germany. In: Proceedings of GIScience (2010). https://www.researchgate.net/publication/267989860_Quantitative_Studies_on_the_Data_Quality_of_OpenStreetMap_in_Germany

  3. Koester, D., Awiszus, M., Stiefelhagen, R.: Mind the gap: virtual shorelines for blind and partially sighted people. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1443–1451 (2017). https://doi.org/10.1109/ICCVW.2017.171

  4. Csapó, Á., Wersényi, G., Nagy, H., Stockman, T.: A survey of assistive technologies and applications for blind users on mobile platforms: a review and foundation for research. J. Multimodal User Interfaces 9(4), 275–286 (2015). https://doi.org/10.1007/s12193-015-0182-7

    Article  Google Scholar 

  5. Se, S.: Zebra-crossing detection for the partially sighted. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 211–217 (2000). https://doi.org/10.1109/CVPR.2000.854787

  6. Ahmetovic, D., Bernareggi, C., Mascetti, S.: Zebralocalizer: identification and localization of pedestrian crossings. In: Proceedings of the International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 275–286 (2011). https://doi.org/10.1145/2037373.2037415

  7. Ahmetovic, D., Bernareggi, C., Gerino, A., Mascetti, S.: ZebraRecognizer: efficient and precise localization of pedestrian crossings. In: 22nd International Conference on Pattern Recognition (ICPR), pp. 2566–2571 (2014). https://doi.org/10.1109/ICPR.2014.443

  8. Ahmetovic, D., Manduchi, R., Coughlan, J., Mascetti, S.: Mind your crossings: mining GIS imagery for crosswalk localization. ACM Trans. Access. Comput. 9(4), 11:1–11:25 (2017). https://doi.org/10.1145/3046790

    Article  Google Scholar 

  9. Ivanchenko, V., Coughlan, J., Shen, H.: Detecting and locating crosswalks using a camera phone. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2008). https://doi.org/10.1109/CVPRW.2008.4563143

  10. Ivanchenko, V., Coughlan, J., Shen, H.: Crosswatch: a camera phone system for orienting visually impaired pedestrians at traffic intersections. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1122–1128. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70540-6_168

    Chapter  Google Scholar 

  11. Ivanchenko, V., Coughlan, J., Shen, H.: Real-time walk light detection with a mobile phone. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010. LNCS, vol. 6180, pp. 229–234. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14100-3_34

    Chapter  Google Scholar 

  12. Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: current status, challenges, and future directions. Sensors 17(3), 565 (2017). https://doi.org/10.3390/s17030565

    Article  Google Scholar 

  13. Coughlan, J., Manduchi, R., Shen, H.: Computer vision-based terrain sensors for blind wheelchair users. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 1294–1297. Springer, Heidelberg (2006). https://doi.org/10.1007/11788713_186

    Chapter  Google Scholar 

  14. Coughlan, J., Shen, H.: Terrain analysis for blind wheelchair users: computer vision algorithms for finding curbs and other negative obstacles. In: CVHI (2007). https://www.ski.org/terrain-analysis-blind-wheelchair-users-computer-vision-algorithms-finding-curbs-and-other-negative

  15. Ivanchenko, V., Coughlan, J., Gerrey, W., Shen, H.: Computer vision-based clear path guidance for blind wheelchair users. In: Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 291–292 (2008). https://doi.org/10.1145/1414471.1414543

  16. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), pp. 963–968 (2011). https://doi.org/10.1109/IVS.2011.5940405

  17. Wu, Z., Fu, W., Xue, R., Wang, W.: A novel line space voting method for vanishing-point detection of general road images. Sensors 16(7), 948 (2016). https://doi.org/10.3390/s16070948

    Article  Google Scholar 

  18. Akinlar, C., Topal, C.: EDLines: real-time segment detection by edge drawing. In: 18th IEEE International Conference on Image Processing (ICIP), pp. 2837–2840 (2011). https://doi.org/10.1109/ICIP.2011.6116138

  19. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  20. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013). https://doi.org/10.1109/TPAMI.2012.257

    Article  Google Scholar 

  21. Chum, O., Matas, J.: Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1472–1482 (2008). https://doi.org/10.1109/TPAMI.2007.70787

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Bundesministerium für Bildung und Forschung (BMBF) under grant no. 16SV7609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Koester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koester, D., Allgeyer, T., Stiefelhagen, R. (2018). Visual Shoreline Detection for Blind and Partially Sighted People. In: Miesenberger, K., Kouroupetroglou, G. (eds) Computers Helping People with Special Needs. ICCHP 2018. Lecture Notes in Computer Science(), vol 10897. Springer, Cham. https://doi.org/10.1007/978-3-319-94274-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94274-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94273-5

  • Online ISBN: 978-3-319-94274-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics