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Abstract. Kernelization is an important tool in parameterized algorith-
mics. Given an input instance accompanied by a parameter, the goal is to
compute in polynomial time an equivalent instance of the same problem
such that the size of the reduced instance only depends on the parameter
and not on the size of the original instance. In this paper, we provide a
first conceptual study on limits of kernelization for several polynomial-
time solvable problems. For instance, we consider the problem of finding
a triangle with negative sum of edge weights parameterized by the maxi-
mum degree of the input graph. We prove that a linear-time computable
strict kernel of truly subcubic size for this problem violates the popular
APSP-conjecture.

1 Introduction

Kernelization is the main mathematical concept for provably efficient preprocess-
ing of computationally hard problems. This concept has been extensively studied
(see, e.g., [17,21,26,27]) and it has great potential for delivering practically rel-
evant algorithms [24,31]. In a nutshell, the aim is to significantly and efficiently
reduce a given instance of a parameterized problem to its “computationally hard
core”. Formally, given an instance (x, k) ∈ {0, 1}∗ × N of a parameterized prob-
lem L, a kernelization for L is an algorithm that computes in polynomial time
an instance (x′, k′), called kernel, such that (i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L and
(ii) |x′| + k′ ≤ f(k), for some computable function f . Although studied mostly
for NP-hard problems, it is natural to apply this concept also to polynomial-time
solvable problems as done e.g. for finding maximum matchings [29]. It is thus
also important to know the limits of this concept. In this paper we initiate a
systematic approach to derive kernelization lower bounds for problems in P. We
demonstrate our techniques at the example of subgraph isomorphism problems
where the sought induced subgraph has constant size and is connected.

When kernelization is studied on NP-hard problems (where polynomial run-
ning times are considered computationally “tractable”), the main point of interest
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becomes the size f(k) of the kernel with respect to the parameter k. In particu-
lar, from a theoretical point of view, one typically wishes to minimize the kernel
size to an—ideally—polynomial function f of small degree. As every decision
problem in P admits a kernelization which simply solves the input instance and
produces a kernel of size O(1) (encoding the yes/no answer), it is crucial to
investigate the trade-off between (i) the size of the kernel and (ii) the running
time of the kernelization algorithm. The following notion captures this trade-off:
An (a, b)-kernelization for a parameterized problem L is an algorithm that, given
any instance (x, k) ∈ {0, 1}∗×N, computes in O(a(|x|)) time an instance (x′, k′)
such that (i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L and (ii) |x′|+ k′ ∈ O(b(k)).

Kernelization for problems in P is part of the recently introduced frame-
work “FPT in P” [20]. This framework is recently applied to investigate param-
eterized algorithms and complexity for problems in P [3,14,16,20,29]. Studying
lower bounds for kernelization for problems in P is—as it turns out—strongly
connected to the active research field of lower bounds on the running times of
polynomial-time solvable problems (see, e.g, [1,2,3,7]). These running time lower
bounds rely on popular conjectures like the Strong Exponential Time Hypothesis
(SETH) [22,23] or the 3SUM-conjecture [19], for instance.

In contrast to NP-hard problems, only little is known about kernelization
lower bounds for problems in P. To the best of our knowledge all known kernel-
ization lower bounds follow trivially from the corresponding lower bounds of the
running time: For instance, assuming SETH, it is known that (i) the hyperbol-
icity and (ii) the diameter of a graph cannot be computed in 2o(k) · n2−ε time
for any ε > 0, where k is (i) the vertex cover number and (ii) the treewidth of
the graph [14,3]. This implies that both problems do not admit an (n2−ε, 2o(k))-
kernelization—a kernel with 2o(k) vertices computable in O(n2−ε) time—since
such a kernelization yields an algorithm running in O(2o(k) + n2−ε) time.

In this paper we initiate a systematic approach to derive kernelization lower
bounds for problems in P for a—very natural—special type of kernels.

Definition 1 (strict (a, b)-kernelization). A strict (a, b)-kernelization for
a parameterized problem L is an algorithm that given any instance (x, k) ∈
{0, 1}∗×N computes in O(a(|x|)) time an instance (x′, k′) such that (i) (x, k) ∈ L
⇐⇒ (x′, k′) ∈ L, (ii) |x′|+ k′ ∈ O(b(k)), and (iii) k′ ≤ k.

Chen et al. [8] introduced a framework to exclude strict kernels for NP-hard
problems, assuming that P 6= NP. Fernau et al. [13] applied the framework to a
wide variety of FPT problems and studied it on “less” strict kernelizations. The
framework [8,13] is based on the notion of (strong) diminishers:

Definition 2 (a-diminisher). An a-diminisher for a parameterized problem L
is an algorithm that given any instance (x, k) ∈ {0, 1}∗ × N in O(a(|x|)) time
either decides whether (x, k) ∈ L or computes an instance (x′, k′) such that
(i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L, and (ii) k′ < k. A strong a-diminisher for L is
an a-diminisher for L with k′ < k/c for some constant c > 1.
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Table 1. Overview of our results. Here, k is interchangeably the order of the largest
connected component, the degeneracy, or the maximum degree.

Negative Weight Triangle
(NWT)

Triangle Collection (TC)

lower No strict (nα, kβ)-kernelization with α, β ≥ 1 and α · β < 3, assuming:
bounds the APSP-conjecture. the SETH, APSP-, or
(Thm. 2) 3SUM-conjecture.

kernel Strict (n(3+ε)/(1+ε), k1+ε)-kernelization for every ε > 0,
(Thm. 3) e.g. strict (n5/3, k3)-kernelization.

Our Contributions. We adapt the diminisher framework [8,13] to prove kernel-
ization lower bounds for problems in P. Our results concern the H-Subgraph
Isomorphism (H-SI) problem3 for constant-sized connected graphs H. As a
running example, we focus on the fundamental case where H is a triangle and
we present diminishers (along with kernelization lower bounds) for the following
weighted and colored variants of the problem:

Negative Weight Triangle (NWT)
Input: An undirected graph G with edge weights w : E(G)→ Z.
Question: Is there a triangle T in G with

∑
e∈E(T ) w(e) < 0?

Triangle Collection (TC)
Input: An undirected graph G with surjective coloring col : V (G)→ [f ].
Question: Does there for all color-triples C ∈

(
[f ]
3

)
exist a triangle with vertex

set T = {x, y, z} in G such that col(T ) = C?

NWT and TC are conditionally hard: If NWT admits a truly subcubic
algorithm—that is, with running time O(n3−ε), ε > 0—then APSP also admits
a truly subcubic algorithm, breaking the APSP-conjecture [30]. A truly subcubic
algorithm for TC breaks the SETH, the 3SUM-, and the APSP-conjecture [4].

For both NWT and TC we consider three parameters (in decreasing order):
(i) order (that is, the number of vertices) of the largest connected component,
(ii) maximum degree, and (iii) degeneracy. We prove that both NWT and TC ad-
mit a strong linear-time diminisher for all these three parameters. Together with
the conditional hardness, we then obtain lower bounds on strict kernelization.
Our results are summarized in Table 1.

Complementing our lower bounds, we prove a strict (n5/3, k3)-kernelization
for NWT and TC (k being any of the three aforementioned parameters) and a
strict (n · ∆bc/2c+1, ∆bc/2c+1)-Turing kernelization for H-Subgraph Isomor-
phism when parameterized by the maximum degree ∆, where c = |V (H)|.

Notation and Preliminaries. We use standard notation from parameterized com-
plexity [10] and graph theory [11]. For an integer j, we define [j] := {1, . . . , j}.
3 The H-Subgraph Isomorphism asks, given an undirected graph G = (V,E),
whether G contains H as a subgraph.
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2 Frameworks to Exclude Polynomial Kernelizations

We briefly recall the existing frameworks to exclude (strict) polynomial-size ker-
nels for NP-hard problems. We further discuss the difficulties that appear when
transferring these approaches to polynomial-time solvable problems.

Composition Framework. The frequently used (cross-)composition frame-
works [5,18,6] are the tools to exclude polynomial-size problem kernels under
the assumption NP ⊆ coNP/poly. There are some issues when adapting these
frameworks for problems in P. We discuss the issues using the H-Subgraph
Isomorphism (H-SI) problem for constant-sized connected H.

Adapting the proofs of Bodlaender et al. [5] and Fortnow and Santhanam [18]
for H-SI leads to the following: “If H-SI parameterized by the order k of the
largest connected component admits an (nc, kc

′
)-kernelization, then H-SI ∈

NTIME(nc
′(c+1))/nc+1.” Since there exists a trivial O(n|H|+1)-time brute-force

algorithm for H-SI, there also exist trivial polynomial-time computable ker-
nels for H-SI. Hence, we have to stick with specifically chosen c and c′ (with
c · c′ < |H|). Furthermore, we cannot transfer these results easily to other prob-
lems in P due to the lack of a suitable completeness theory (H-SI belongs to P).

One drawback of the composition approach for any problem L in P is the lack
of clarity on the assumption’s (L /∈ NTIME(nc

′(c+1))/nc+1) reasonability. More-
over, due to a missing equivalent to the NP-completeness theory, the assumption
bases on specific problems and not on complexity classes.

Strict Kernelization and Diminishers. Chen et al. [8] introduced a framework to
exclude strict kernelization, that is, kernelization that do not allow an increase
in the value of the parameter in the obtained kernel instance. This framework
builds on the assumption P 6= NP and can be easily adapted to exclude strict
kernels for polynomial-time solvable problems. Recall that for problems in P,
both the size of the kernel and the kernelization running time are important.

Theorem 1 (?4). Let L be a parameterized problem with parameter k such
that each instance with parameter k ≤ c for some constant c > 0 is a trivial
instance of L. If L with parameter k admits a strict (a, b)-kernelization and an
a′-diminisher (a strong a′-diminisher), then any instance (x, k) is solvable in
O(k · (a(a′(b(k))) + a(|x|)) time (in O(log k · (a(a′(b(k))) + a(|x|)) time).

We point out that—in contrast to “classic” kernelization for NP-hard problems—
for two parameters k and k′ for a problem L such that k′ is stronger [25] than k, a
strict kernelization regarding k does not imply a strict kernelization regarding k′.

Reductions for Transferring Kernels. There are two issues when using the strat-
egy of polynomial parameter transformations to transfer results of Theorem 1
along polynomial-time solvable problems: First, we need to require the trans-
formation to be computable “fast” enough and that the parameter does not
4 Results marked with (?) are deferred to a long version [15] of the paper.
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increase (k′ ≤ k). Second, in order to transfer a strict kernel we need to show a
reverse transformation from L′ to L which again is computable “quick” enough
and does not increase the parameter. Hence, we essentially need to show that the
two problems L and L′ are equivalent under these restrictive transformations.

3 Kernelization Lower Bounds via Diminishers

In this section, we present diminishers for H-Subgraph Isomorphism (H-SI)
for connected H with respect to the structural parameters (i) order ` of the
largest connected component, (ii) maximum degree ∆, and (iii) degeneracy d.
Observe that d ≤ ∆ ≤ ` in every graph. These lead to our following main result.

Theorem 2. If NWT (TC) parameterized by k being the (i) order ` of the largest
connected component, (ii) maximum degree ∆, or (iii) degeneracy d admits a
strict (nα, kβ)-kernel for constants α, β ≥ 1 with α · β < 3, then the APSP-
conjecture (the SETH, the 3SUM-, and the APSP-conjecture) breaks.

Parameter Order of the Largest Connected Component. In the following, we
prove a linear-time strong diminisher regarding the parameter order of the largest
connected component for problems of finding constant-size subgraphs (with some
specific property). The idea behind our diminisher is depicted as follows: for
each connected component, partition the connected component into small parts
and then take the union of not too many parts to construct new (connected)
components (see Figure 1 for an illustration of the idea with H being a triangle).

Construction 1. LetH be an arbitrary but fixed connected constant-size graph
of order c > 1. Let G = (V,E) be a graph with the largest connected compo-
nent being of order `. First, compute in O(n +m) time the connected compo-
nents G1, . . . , Gr of G. Then, construct a graph G′ as follows.

Let G′ be initially the empty graph. If ` ≤ 4c, then set G′ = G. Otherwise,
if ` > 4c, then construct G′ as follows. For each connected component Gi =
(Vi, Ei), do the following. If the connected component Gi = (Vi, Ei) is of order at
most `/2, then add Gi to G′. Otherwise, if ni := |Vi| > `/2, then we partition Vi
as follows. Without loss of generality let Vi be enumerated as Vi = {v1i , . . . , v

ni
i }.

For every p ∈ {1, . . . , 4c}, define V pi := {vqi ∈ Vi | q mod 4c = p−1}. This defines
the partition Vi = V 1

i ] · · · ] V 4c
i . Then, for each {a1, . . . , ac} ∈

(
[4c]
c

)
, add the

graph G[V a1i ∪ . . . ∪ V
ac
i ] to G′. This completes the construction. �

Employing Construction 1, we obtain the following.

Proposition 1 (?). NWT and TC parameterized by the order ` of the largest
connected component admit a strong (n+m)-diminisher.

There is a straight-forward O(k2 ·n)-time algorithm for NWT and TC: Check
for each vertex all pairs of other vertices in the same connected component.
However, under the APSP-conjecture (and SETH for TC) there are no O(n3−ε)-
time algorithms for any ε > 0 [4,30]. Combining this with our diminisher in
Proposition 1 we can exclude certain strict kernels as shown below.
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Fig. 1. Schematic illustration of the idea behind our diminisher for the parameter order
of the largest connected component.

Proof (of Theorem 2(i)). By Proposition 1, we know that NWT admits a strong
(n+m)-diminisher. Suppose that NWT admits a strict (nα, kβ)-kernel for α ≥
1, β ≥ 1 with α · β = 3 − ε0, ε0 > 0. It follows by Theorem 1 that NWT is
solvable in t(n, k) ∈ O(kβ·α log(k) + nα) time. Observe that log(k) ∈ O(kε1)
for 0 < ε1 < ε0. Together with k ≤ n and α ·β = 3− ε0 we get t(n, k) ∈ O(n3−ε)
with ε = ε0−ε1 > 0. Hence, the APSP-conjecture breaks [30]. The proof for TC
works analogously. ut

Parameter Maximum Degree. The diminisher described in Construction 1 does
not necessarily decrease the maximum degree of the graph. We thus adapt the
diminisher to partition the edges of the given graph (using an (improper) edge-
coloring) instead of its vertices. Furthermore, if H is of order c, then H can
have up to

(
c
2

)
≤ c2 edges. Thus, our diminisher considers all possibilities to

choose c2 (instead of c) parts of the partition. For the partitioning step, we need
the following.

Lemma 1 (?). Let G = (V,E) be a graph with maximum degree ∆ and let b ∈
N. One can compute in O(b(n+m)) time an (improper) edge-coloring col : E →
N with less than 2b colors such that each vertex is incident to at most d∆/be
edges of the same color.

Construction 2. Let H be an arbitrary but fixed connected constant-size
graph of order c > 1. Let G = (V,E) be a graph with maximum degree ∆.
First, employ Lemma 1 to compute an (improper) edge-coloring col : E → N

with 4c2 ≤ f < 8c2 many colors (without loss of generality we assume
=(col) = {1, . . . , f}) such that each vertex is incident to at most d∆/(4c2)e
edges of the same color.

Now, construct a graph G′ as follows. Let G′ be initially the empty graph.
If ∆ ≤ 4c2, then set G′ = G. Otherwise, if ∆ > 4c2, then construct G′ as
follows. We first partition E: Let Ep be the edges of color p for every p ∈
{1, . . . , f}. Clearly, E = E1 ] · · · ]Ef . Then, for each {a1, . . . , ac2} ∈

(
[f ]
c2

)
, add

the graph (V,Ea1 ∪ . . . ∪ Eac2 ) to G′. This completes the construction. �
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Proposition 2 (?). NWT and TC parameterized by maximum degree ∆ admit
a strong (n+m)-diminisher.

Parameter Degeneracy. The degeneracy of a graph is the smallest number d
such that every induced subgraph contains a vertex of degree at most d. For
parameter degeneracy, the diminisher follows the same idea as the diminisher
for the parameter maximum degree (see Construction 2). The only difference
between the two diminishers is how the partition of edge set is obtained.

Construction 3. Let H be an arbitrary but fixed constant-size graph of or-
der c > 1. Let G = (V,E) be a graph with degeneracy d. First, compute a
degeneracy ordering5 σ in O(n+m) time [28]. Construct a graph G′ as follows.

Let G′ be initially the empty graph. If d ≤ 4c2, then set G′ = G. Otherwise,
if d > 4c2, then construct G′ as follows. First, for each vertex v ∈ V , we partition
the edge set Ev := {{v, w} ∈ E | σ(v) < σ(w)} going to the right of v with
respect to σ into 4c2 parts. Let Ev be enumerated as {e1, . . . , e|Ev|}. For each v,
we define Epv := {ei ∈ Ev | i mod 4c2 = p − 1} for every p ∈ [4c2]. Clearly,
Ev = E1

v]· · ·]E4c2

v . Next, we define Ep :=
⋃
v∈V E

p
v for every p ∈ [4c2]. Clearly,

E =
⊎

1≤p≤4c2 E
p =

⊎
1≤p≤4c2

⊎
v∈V E

p
v . Then, for each {a1, . . . , ac2} ∈

(
[4c2]
c2

)
,

add the graph (V,Ea1 ∪ . . . ∪ Eac2 ) to G′. This completes the construction. �

Proposition 3 (?). NWT and TC parameterized by degeneracy admit a strong
(n+m)-diminisher.

4 (Turing) Kernelization Upper Bounds

We complement our results on kernelization lower bounds by showing straight-
forward strict kernel results for H-Subgraph Isomorphism for connected
constant-size H to show the limits of any approach showing kernel lower bounds.

Strict Turing Kernelization. For the parameters order of the largest connected
component and maximum degree, we present strict (a, b)-Turing kernels:

Definition 3. A strict (a, b)-Turing kernelization for a parameterized problem L
is an algorithm that decides every input instance (x, k) in time O(a(|x|)) given
access to an oracle that decides whether (x′, k′) ∈ L for every instance (x′, k′)
with |x′|+ k′ ≤ b(k) in constant time.

Note that the diminisher framework in its current form cannot be applied to
exclude (strict) (a, b)-Turing kernelizations. In fact, it is easy to see that H-
Subgraph Isomorphism for connected constant-size H parameterized by the
order ` of the largest connected component admits an (n+m, `2)-Turing kernel,
as each oracle call is on a connected component (which is of size at most O(`2)) of
the input graph. We present a strict Turing kernelization for H-SI for connected
constant-size H parameterized by maximum degree ∆.
5 This is an ordering of the vertices such that each vertex v has at most d neighbors
ordered after v.
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Proposition 4 (?). H-Subgraph Isomorphism for connected H with c =
|V (H)| parameterized by maximum degree ∆ admits a strict (n·∆·(∆−1)bc/2c, ∆·
(∆− 1)bc/2c)-Turing kernel.

Running-time Related Strict Kernelization. For NP-hard problems, it is well-
known that a decidable problem is fixed-parameter tractable if and only if it
admits a kernel [12]. In the proof of the only if -statement, one derives a kernel
of size only depending on the running time of a fixed-parameter algorithm solving
the problem in question. We adapt this idea to derive a strict kernel where the
running time and size admit such running time dependencies.

Theorem 3 (?). Let L be a parameterized problem admitting an algorithm solv-
ing each instance (x, k) in kc · |x| time for some constant c > 0. Then for ev-
ery ε > 0, each instance (x, k) admits a strict (|x|1+c/(1+ε), k1+ε)-kernel.

NWT and TC are both solvable in O(k2 · n) time (k being the order ` of the
largest connected component, the maximum degree ∆, or the degeneracy d [9]).
Together with Theorem 3 gives several kernelization results for NWT and TC,
for instance, with ε = 2:

Corollary 1. NWT admits a strict (n5/3, d3)-kernel when parameterized by the
degeneracy d of the input graph.

Note that the presented kernel is a strict (nα, dβ)-kernel with α = 5/3 and β = 3.
As α · β = 5 in this case, there is a gap between the above kernel and the lower
bound of α · β ≥ 3 in Theorem 2(iii). Future work could be to close this gap.

5 Conclusion

We provided the first conceptual analysis of strict kernelization lower bounds
for problems solvable in polynomial time. To this end, we used and (slightly)
enhanced the parameter diminisher framework [8,13]. Our results for Negative
Weight Triangle and Triangle Collection rely on the APSP-conjecture
and SETH, but these assumptions can be replaced with any running-time lower
bound known for the problem at hand. Indeed the framework is not difficult to
apply and we believe that developing special techniques to design diminishers is
a fruitful line of further research.

We point out that the framework excludes certain trade-offs between kernel
size and running time: the smaller the running time of the diminisher, the larger
the size of the strict kernel that can be excluded. However, the framework in
its current form cannot be used to exclude the existence of any strict kernel of
polynomial size in even linear time.

In this work, we only considered parameters that we call dispersed param-
eters, defined as follows. Let G be an instance of a graph problem L, and
let G1, G2, . . . , Gp be its connected components, where p ≥ 1. A parameter k
of G is dispersed if k(G) (i.e. the value of the parameter k in the graph G) is
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equal to k(Gi) for at least one connected subgraph Gi of G. Otherwise, if k(G)
is larger than k(Gi) for every connected subgraph Gi of G, then we call k an
aggregated parameter. In our opinion, it is of independent interest to apply the
(strong) diminisher framework to graph problems with aggregated parameters.
Note that such a classification into dispersed and aggregated parameters has not
been studied previously.

We close with one concrete challenge: Is there a (strong) diminisher for NWT
or TC with respect to the (aggregated) parameter feedback vertex number? Note
that the disjoint union operation that we use in all our diminishers in Section 3
can increase this parameter.

Acknowledgement. We thank Holger Dell (Saarland University) for fruitful dis-
cussion on Section 2 and Rolf Niedermeier for discussions leading to this work.
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