Skip to main content

Polynomial-Time Presentations of Algebraic Number Fields

  • Conference paper
  • First Online:
Book cover Sailing Routes in the World of Computation (CiE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10936))

Included in the following conference series:

Abstract

Using an extension of the notion of polynomial time presentable structure we show that some natural presentations of the ordered field \({\mathbb R}_{\text{ alg }}\) of algebraic reals and of the field \({\mathbb C}_{\text{ alg }}\) of algebraic complex numbers are polynomial-time equivalent to each other and are polynomial time. We also establish upper complexity bounds for the problem of rational polynomial evaluation in \({\mathbb C}_{\text{ alg }}\) and for the problem of root-finding for polynomials in \({\mathbb C}_{\text{ alg }}[x]\) which improve the previously known bound.

P. Alaev—The work of first author was funded by RFBR, the research project 17-01-00247.

V. Selivanov—The work of second author was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project No 1.12878.2018/12.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Plenum, New York (1999)

    MATH  Google Scholar 

  2. Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Handbook of Logic in Computer Science: Semantic Modelling, vol. IV, pp. 357–526. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Trans. Am. Math. Soc. 95, 341–360 (1960)

    MathSciNet  MATH  Google Scholar 

  4. Ershov, Y.L.: Theorie der Nummerierungen III. Ziets. Math. Logik Grundl. Math. 23, 289–371 (1977)

    Google Scholar 

  5. Nerode, A., Remmel, J.B.: Complexity theoretic algebra I, vector spaces over finite fields. In: Proceedings of Structure in Complexity, 2nd Annual Conference, pp. 218–239. Computer Sci. Press, New York (1987)

    Google Scholar 

  6. Cenzer, D., Remmel, J.B.: Complexity theoretic model theory and algebra. In: Handbook of Recursive Mathematics, vol. 1. Elsevier, New York City (1998)

    Google Scholar 

  7. Cenzer, D., Remmel, J.: Polynomial time versus recursive models. Ann. Pure Appl. Log. 54, 17–58 (1991)

    Article  MathSciNet  Google Scholar 

  8. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

    Book  MATH  Google Scholar 

  9. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley Pub. Co., Boston (1974)

    MATH  Google Scholar 

  10. Alaev, P.E.: Structures computable in polynomial time I. Algebra Log. 55(6), 421–435 (2016). https://doi.org/10.1007/s10469-017-9416-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Van der Waerden, B.L.: Algebra. Springer, Berlin (1967)

    MATH  Google Scholar 

  12. Balcázar, J.L., Díaz, J., Gabarró, J., Structural, C.I.: Structural Complexity I. EATCS, vol. 11. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-97062-7

    Book  MATH  Google Scholar 

  13. Akritas, A.G.: Elements of Computer Algebra with Applications. Wiley, New York (1989)

    MATH  Google Scholar 

  14. Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds.) Computer Algebra: Symbolic and Algebraic Computations. COMPUTING, vol. 4, pp. 83–94. Springer, Vienna (1982). https://doi.org/10.1007/978-3-7091-7551-4_7

    Chapter  Google Scholar 

  15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  16. Loos, R.: Computing in algebraic extensions. In: Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computations. COMPUTING, vol. 4, pp. 173–187. Springer, Vienna (1982). https://doi.org/10.1007/978-3-7091-3406-1_12

    Chapter  Google Scholar 

  17. Coste, M., Roy, M.F.: Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets. J. Symb. Comput. 5, 121–129 (1988)

    Article  MathSciNet  Google Scholar 

  18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  19. Jian-Ping, Z.: On the degree of extensions generated by finitely many algebraic numbers. J. Number Theory 34, 133–141 (1990)

    Article  MathSciNet  Google Scholar 

  20. Collins, G.E.: The Calculation of multivariate polynomial resultants. J. Assoc. Comput. Mach. 18(4), 515–532 (1971)

    Article  MathSciNet  Google Scholar 

  21. Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, Wien (1996). https://doi.org/10.1007/978-3-7091-6571-3

    Book  MATH  Google Scholar 

  22. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-02945-9

    Book  Google Scholar 

  23. Yap, C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  24. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Alaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alaev, P., Selivanov, V. (2018). Polynomial-Time Presentations of Algebraic Number Fields. In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94418-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94417-3

  • Online ISBN: 978-3-319-94418-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics