Skip to main content

Weak Reduction Principle and Computable Metric Spaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10936))

Abstract

This paper is a part of the ongoing research on developing a foundation for studying arithmetical and descriptive complexity of partial computable functions in the framework of computable topology. We propose new principles for computable metric spaces. We start with a weak version of Reduction Principle (\(\mathrm {WRP}\)) and prove that the lattice of the effectively open subsets of any computable metric space meets \(\mathrm {WRP}\). We illustrate the role of \(\mathrm {WRP}\) within partial computability. Then we investigate the existence of a principal computable numbering for the class of partial computable functions from an effectively enumerable space to a computable metric space. We show that while in general such numbering does not exist in the important case of a perfect computable Polish space it does. The existence of a principal computable numbering gives an opportunity to make reasoning about complexity of well-known problems in computable analysis in terms of arithmetical and analytic complexity of their index sets.

The research has been partially supported by the DFG grants CAVER BE 1267/14-1 and WERA MU 1801/5-1, RFBR grant A-17-01-00247.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ershov, Y.L.: Definability and Computability. Springer, New York (1996)

    MATH  Google Scholar 

  2. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory, pp. 473–503. Elsevier Science B.V., Amsterdam (1999)

    Chapter  Google Scholar 

  3. Edalat, A.: Domains for computation in mathematics, physics and exact real arithmetic. Bull. Symb. Logic 3(4), 401–452 (1997)

    Article  MathSciNet  Google Scholar 

  4. Hemmerling, A.: Effective metric spaces and representations of the reals. Theor. Comput. Sci. 284(2), 347–372 (2002)

    Article  MathSciNet  Google Scholar 

  5. Korovina, M., Kudinov, O.: On higher effective descriptive set theory. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 282–291. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7_27

    Chapter  Google Scholar 

  6. Korovina, M., Kudinov, O.: Outline of partial computability in computable topology. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 64–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7_7

    Chapter  Google Scholar 

  7. Korovina, M., Kudinov, O.: Complexity for partial computable functions over computable Polish spaces. Math. Struct. Comput. Sci. 28(3), 429–447 (2016)

    Article  MathSciNet  Google Scholar 

  8. Korovina, M., Kudinov, O.: Towards computability over effectively enumerable topological spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125 (2008)

    Article  MathSciNet  Google Scholar 

  9. Korovina, M., Kudinov, O.: Towards computability of higher type continuous data. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 235–241. Springer, Heidelberg (2005). https://doi.org/10.1007/11494645_30

    Chapter  Google Scholar 

  10. Korovina, M.V., Kudinov, O.V.: Characteristic properties of majorant-computability over the reals. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 188–203. Springer, Heidelberg (1999). https://doi.org/10.1007/10703163_14

    Chapter  Google Scholar 

  11. Moschovakis, Y.N.: Descriptive Set Theory. North-Holland, Amsterdam (2009)

    Book  Google Scholar 

  12. Moschovakis, Y.N.: Recursive metric spaces. Fund. Math. 55, 215–238 (1964)

    Article  MathSciNet  Google Scholar 

  13. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  14. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer, Heidelberg (1987)

    Book  Google Scholar 

  15. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  16. Weihrauch, K.: Computability on computable metric spaces. Theor. Comput. Sci. 113(1), 191–210 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Korovina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korovina, M., Kudinov, O. (2018). Weak Reduction Principle and Computable Metric Spaces. In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94418-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94417-3

  • Online ISBN: 978-3-319-94418-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics