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Abstract. Android embodies security mechanisms at both OS and ap-
plication level. In this platform application security is built primarily
upon a system of permissions which specify restrictions on the operations
a particular process can perform. The critical role of these security mech-
anisms makes them a prime target for (formal) verification. We present
an idealized model of a reference monitor of the novel mechanisms of
Android 6 (and further), where it is possible to grant permissions at
run time. Using the programming language of the proof-assistant Coq we
have developed a functional implementation of the reference validation
mechanism and certified its correctness with respect to the specified ref-
erence monitor. Several properties concerning the permission model of
Android 6 and its security mechanisms have been formally formulated
and proved. Applying the program extraction mechanism provided by
Coq we have also derived a certified Haskell prototype of the reference
validation mechanism.

1 Introduction

The Android [19] platform for mobile devices captures more than 85% of the
total market-share [14]. Mobile devices allow people to develop multiple tasks
in different areas, regrettably, the benefits of using them are counteracted by
increasing security risks.

Android embodies security mechanisms at both OS and application level. Ap-
plication security is built primarily upon a system of permissions, which specify
restrictions on the operations a particular process can perform. Permissions in
Android are basically tags that developers declare in their applications, more
precisely in the so-called application manifest, to gain access to sensitive re-
sources. On all versions of Android an application must declare both the normal
and the dangerous permissions it needs in its application manifest. However, the
effect of that declaration is different depending on the system version and the
application’s target SDK level [3]. In particular, if a device is running Android 6
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(Marshmallow) and the application’s target SDK is 23 or higher the application
has to list the permissions in the manifest, and it must request each dangerous
permission it needs while the application is running. The user can grant or deny
each permission, and the application can continue to run with limited capabili-
ties even if the user denies a permission request. This modification of the access
control and decision process, on the one side, streamlines the application install
process, since the user does not need to grant permissions when he/she installs or
updates an application. On the other hand, as users can revoke the (previously
granted) permissions at any time, the application needs to check whether it has
the corresponding privileges every time it attempts to access a resource on the
device [3]. The important and critical role of these security mechanisms makes
them a prime target for (formal) verification.

Security models play an important role in the design and evaluation of secu-
rity mechanisms of systems. Their importance was already pointed out in 1972
in the Anderson report [1], where the concept of reference monitor was first in-
troduced. This concept defines the design requirements for implementing what
is called a reference validation mechanism, which shall be responsible for enforc-
ing the access control policy of a system. The work presented here is concerned
with the formal analysis and verification of properties performed on an idealized
model that abstracts away the specifics of any particular implementation, and
yet provides a realistic setting in which to explore the issues that pertain to the
realm of (critical) security mechanisms of Android.

Contributions In [8,9], we have presented a formal specification of an idealized
formulation of the permission model of version 5 of Android. Here we present an
enriched version of that model which can be used to perform a formal analysis
of the novel mechanisms of Android 6, which make it possible to grant permis-
sions at run time. Furthermore, using the programming language of Coq [22]
we have developed an executable (functional) specification of the reference val-
idation mechanism and it has been proved that those functions conform to the
axiomatic specification as specified in the model. Additionally, and using the pro-
gram extraction mechanism provided by Coq, we have derived a certified Haskell

prototype of the reference validation mechanism. Several properties concerning
the security model of Android 6 have been formally formulated and proved.

Organization of the paper Section 2 reviews the security mechanisms of Android.
Section 3 describes the formal axiomatic specification of the Android security
system and discusses some of the verified properties. Section 4 presents a func-
tional (operational) semantics of the specified reference monitor and outlines its
proof of correctness. This section also discusses security properties satisfied by
the certified implementation of the security mechanisms. Section 5 considers re-
lated work and finally, Section 6 concludes with a summary of our contributions
and directions for future work. The full formalization may be obtained from [15]
and verified using the Coq proof assistant.
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2 Android’s security model

The architecture of Android takes the form of a software stack which comprises
an OS, a run-time environment, middleware, services and libraries, and appli-
cations. An Android application is built up from components. A component is
a basic unit that provides a particular functionality and that can be run by
any other application with the right permissions. There exist four types of com-
ponents [2]: i) activity, which is essentially a user interface of the application;
ii) service, a component that executes in background without providing an inter-
face to the user; iii) content provider, a component intended to share information
among applications; and iv) broadcast receiver, a component whose objective is
to receive messages, sent either by the system or an application, and trigger the
corresponding actions. Activities, services and broadcast receivers are activated
by a special kind of message called intent. An intent makes it possible for dif-
ferent components to interact at runtime. A intent filter specifies the types of
intents that a component receiver can respond to [2]. Applications usually need
to use system resources to execute properly. Since applications run inside sand-
boxes, this entails the existence of a decision procedure (a reference validation
mechanism) that guarantees the authorized access to those resources. Decisions
are made by following security policies using a simple notion of permission. Every
permission is identified by a name/text, has a protection level and may belong
to a permission group. There exist two principal classes of permissions: the ones
defined by the application, for the sake of self-protection; and those predefined
by Android, which are intended to protect access to resources and services of
the system. An application declares –in a XML file called AndroidManifest– the
set of permissions it needs to acquire further capacities than the default ones.
When an action involving permissions is required, the system determines which
permissions every application has and either allows or denies its execution.

Depending on the protection level of the permission, the system defines the
corresponding decision procedure [4]. There are four classes of permission levels:
i) Normal, assigned to low risk permissions that grant access to isolated charac-
teristics; ii) Dangerous, permissions of this level are those that provide access to
private data or control over the device. From version 6 of Android dangerous per-
missions are not granted at installation time; iii) Signature, a permission of this
level is granted only if the application that requires it and the application that
defined it are both signed with the same certificate; and iv) Signature/System,
this level is assigned to permissions that regulate the access to critical system
resources or services. Additionally, an application can also declare the permis-
sions that are needed to access it. A running application may ask the user to
grant it dangerous permission groups and ungrouped permissions, who in turn
can accept or decline this request.

If the execution of an action requires for an application to have certain per-
mission the system will first make sure that this holds by means of the following
rules: i) the application must declare the permission as used in its manifest; ii) if
the permission is of level Normal, then the application does have it; iii) if the
permission is of level Dangerous and belongs to a permission group, such group
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must have been granted to the application; iv) if the permission is of level Dan-
gerous but is ungrouped, then it must have been individually granted to the
application; v) if the permission is of level Signature, then the both the involved
application and the one that declares it must have been signed with the same
certificate; vi) lastly, if the permission is of level Signature/System, then the in-
volved application must have been signed with either the same certificate as the
one who declares it or the certificate of the device manufacturer. Otherwise, an
error is thrown and the action is not executed.

Android provides two mechanisms by which an application can delegate its
own permissions to another one. These mechanisms are called pending intents
and URI permissions. An intent may be defined by a developer to perform a
particular action. A PendingIntent is an object which is associated to the action,
a reference that might be used by another application to execute that action. The
URI permissions mechanism can be used by an application that has read/write
access to a content provider to delegate those permissions to another application.

3 Formalization of the permission model

In this section we provide a short account of the axiomatic semantics of the
Android security system and discuss some of the verified security properties.

Formal language used The Coq proof assistant provides a (dependently typed)
functional programming language and a reasoning framework based on higher
order logic to perform proofs of (complex) specifications and programs. Coq al-
lows developing mathematical facts. This includes defining objects (sets, lists,
streams, functions, programs); making statements (using basic predicates, logi-
cal connectives and quantifiers); and finally writing proofs. The type of proposi-
tions is called Prop. The Coq environment provides program extraction towards
languages like Ocaml and Haskell for execution of (certified) algorithms [16,17].

In this work, enumerated types and sum types are defined using Haskell-like

notation; for example, option T
def
= None | Some (t : T ). Record types are of the

form {l1 : T1, . . . , ln : Tn}, whereas their elements are of the form {t1, . . . , tn}.
Field selection is written as r.li. We also use {T } to denote the set of elements of
type T . Finally, the symbol × defines tuples, and nat is the datatype of natural
numbers. We omit Coq code for reasons of clarity; this code is avalilable in [15].

3.1 Model states

The Android security model we have developed has been formalized as an ab-
stract state machine. In this model, states (AndroidST) are modelled as 12-tuples
that respectively store data about the applications installed, their permissions
and the running instances of components; the formal definition appears in Fig-
ure 1.

The type PermId represents the set of permissions identifiers; PermGroup, the
set of permission groups identifiers; Comp, the application components whose
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OpTy ::= read | write | rw
PermLvl ::= dangerous | normal | signature | Signature/System
Perm ::= PermId × option PermGroup × PermLvl

InstApps ::= {AppId}
PermsGr ::= {AppId × PermGroup}
AppPS ::= {AppId × PermId}
CompInstance ::= iComp × Comp
CompInsRun ::= {CompInstance}
DelPPerms ::= {AppId × ContProv × Uri × OpTy}
DelTPerms ::= {iComp × ContProv × Uri × OpTy}
ARVS ::= {AppId × Res × Val}
Intents ::= {iComp × Intent}
Manifest ::= {Comp} × option nat × option nat × {PermId} × {Perm} × option PermId

Manifests ::= {AppId × Manifest}
Certs ::= {AppId × Cert}
AppDefPS ::= {AppId × Perm}
SysImage ::= {SysImgApp}

AndroidST ::= InstApps × PermsGr × AppPS × CompInsRun × DelPPerms × DelTPerms ×
ARVS × Intents × Manifests × Certs × AppDefPS × SysImage

Fig. 1. Android state

code will run on the system; AppId represents the set of application identifiers;
iComp is the set of identifiers of running instances of application components;
ContProv is a subset of Comp, a special type of component that allows sharing
resources among different applications; a member of the type Uri is a particular
uri (uniform resources identifier); the type Res represents the set of resources
an application can have (through its content providers, members of ContProv);
the type Val is the set of possible values that can be written on resources; an
intent –i.e. a member of type Intent– represents the intention of a running com-
ponent instance to start or communicate with other applications; a member of
SysImgApp is a special kind of applications which are deployed along with the
OS itself and has certain privileges, like being impossible to uninstall.

The first component of a state records the identifiers (AppId) of the appli-
cations installed by the user. The second and third components of the state
keep track, respectively, of the permission groups (PermGroup) and ungrouped
permissions granted to each application present in the system, both the ones
installed by the user and the system applications. The fourth component of the
state stores the set of running component instances (CompInstance), while the
components DelPPerms and DelTPerms store the information concerning per-
manent and temporary permissions delegations, respectively3. The seventh and
eight components of the state store respectively the values (Val) of resources
(Res) of applications and the set of intents (Intent) sent by running instances of
components (iComp) not yet processed. The four last components of the state
record information that represents the manifests of the applications installed by
the user, the certificates (Cert) with which they were signed and the set of per-

3 A permanent delegated permission represents that an app has delegated permission
to perform an operation on the resource identified by an URI. A temporary delegated
permission refers to a permission that has been delegated to a component instance.
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missions they define. The last component of the state stores the set of (native)
applications installed in the Android system image, information that is relevant
when granting permissions of level Signature/System. A manifest (Manifest) is
modelled as a 6-tuple that respectively declare application components (set of
components, of type Comp, included in the application); optionally, the mini-
mum version of the Android SDK required to run the application; optionally,
the version of the Android SDK targeted on development; the set of permissions
it may need to run at its maximum capability; the set of permissions it declares;
and the permission required to interact with its components, if any. Applica-
tion components are all denoted by a component identifier. A content provider
(ContProv), in addition, encompasses a mapping to the managed resources from
the URIs assigned to them for external access. While the components constitute
the static building blocks of an application, all runtime operations are initiated
by component instances, which are represented in our model as members of an
abstract type.

We define a notion of valid state, through the predicate valid_state on the
elements of type AndroidST, that captures several well-formedness conditions.
The definition is provided in Appendix A.

3.2 Action semantics

The axiomatic semantics of the Android security system is modeled by defining
a set of actions, and providing their semantics as state transformers. Table 1
summarises a subset of the actions specified in our model, which provide coverage
to the different functionalities of the Android security model.

The behaviour of actions (of type Action) is specified by a precondition P re
and by a postcondition P ost of respective types: P re : AndroidST → Action →
P rop, and P ost : AndroidST → Action → AndroidST → P rop. For instance, the
axiomatic semantics of the install action is given by:

P re(s, install app m c lRes)
def
=

¬isAppInstalled(app,s) ∧ ¬has_duplicates_cmp(m) ∧
∀c : Comp, c ∈ cmp(m) → c /∈ cmpInState(s) ∧
¬hasDuplicates_perm(m) ∧ authP erms(m, s) ∧
∀c : Comp, c ∈ cmp(m) → cmpDeclareIntentF ilterCorrectly(c)

P ost(s, install app m c lRes, s′)
def
=

addManifest(m, app, s, s′) ∧ addCert(c, app, s, s′) ∧
addDefP erms(app,m, s, s′) ∧ addApp(app,s, s′) ∧
addRes(app, lRes, s, s′) ∧ initializeP ermLists(app, s, s′) ∧
sameOtherF ields_install(s, s′)

The precondition of action install app m c lRes in a state s requires that the
application is not already installed, and that no system application has its same
identifier (¬isAppInstalled(app, s)). The identifiers of the components listed in
its manifest (c ∈ cmp(m)) must be different from each other (¬has_duplicates_
cmp(m)), and also different from those of the components already present in the
device (c /∈ cmpInState(s)). The permissions defined by the application to be
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install app m c lRes Install application with id app, whose manifest is m, is signed with certifi-
cate c and its resources list is lRes.

uninstall app Uninstall the application with id app.
grant p app Grant the permission p to the application app.
revoke p app Remove the permission p from the application app.
grantPermGroup g app Grant the permission group g to the application app.
revokePermGroup g app Remove the permission group g from the application app.
hasPermission p app Check if the application app has the permission p.
read ic cp u The running comp. ic reads the resource corresponding to URI u from

content provider cp.
write ic cp u val The running comp. ic writes value val on the resource corresponding to

URI u from content provider cp.
startActivity i ic The running comp. ic asks to start an activity specified by the intent i.
startActivityRes i n ic The running comp. ic asks to start an activity specified by the intent i,

and expects as return a token n.
startService i ic The running comp. ic asks to start a service specified by the intent i.
sendBroadcast i ic p The running comp. ic sends the intent i as broadcast, specifying that only

those components who have the permission p can receive it.
sendOrdBroadcast i ic p The running comp. ic sends the intent i as an ordered broadcast, specifying

that only those components who have the permission p can receive it.
sendSBroadcast i ic The running comp. ic sends the intent i as a sticky broadcast.
resolveIntent i app Application app makes the intent i explicit.
receiveIntent i ic app Application app receives the intent i, sent by the running comp. ic.
stop ic The running comp. ic finishes its execution.
grantP ic cp app u pt The running comp. ic delegates permanent permissions to application app.

This delegation enables app to perform operation pt on the resource as-
signed to URI u from content provider cp.

revokeDel ic cp u pt The running comp. ic revokes delegated permissions on URI u from content
provider cp to perform operation pt.

call ic sac The running comp. ic makes the API call sac.

Table 1. Actions

installed must be different from each other (¬hasDuplicates_perm(m)) as well
as different from those defined by other applications (authP erms(m, s)). Finally,
the intent filters of its components (c ∈ cmp(m)) must be well defined; the
specified types of intents must match (cmpDeclareIntentF ilterCorrectly(c)).

The postcondition of action install app m c lRes, with initial state s
and final state s′, specifies that its manifest (m), the certificate with which
it was signed (c) and the permissions it defines that are not system permis-
sions must be added to the state bound to the application identifier (predicates
addManifest, addCert, and addDefP erms); which in turn must be included in
the list of installed applications (addApp(app, s, s′)). The application resources
are initialized with the initial value initV al (addRes(app, lRes, s, s′)), while the
lists of permission and permission groups granted to the application are initial-
ized as empty (initializeP ermLists(app, s, s′)). The rest of the system compo-
nents remain unchanged (sameOtherF ields_install(s, s′)).

3.3 Executions

There can be attempts to execute an action on a state that does not verify the
precondition of that action. In the presence of one such situation the system
answers with a corresponding error code (of type ErrorCode).
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Executing an action a over a valid state s produces a new state s′ and a

corresponding answer r (denoted s֒
a/r
−−→s′), where the relation between the former

state and the new one is given by the postcondition relation P ost.

valid_state(s) P re(s, a) P ost(s, a, s′)

s ֒
a/ok
−−−→ s′

valid_state(s) ErrorMsg(s, a, ec)

s ֒
a/error(ec)
−−−−−−−→ s

Whenever an action occurs for which the precondition holds, the valid state may
change in such a way that the action postcondition is established. The notation

s֒
a/ok
−−−→s′ may be read as the execution of the action a in a valid state s results in

a new state s′. However, if the precondition is not satisfied, then the valid state
s remains unchanged and the system answer is the error message determined by
a relation ErrorMsg4. Formally, the possible answers of the system are defined

by the type Response
def
= ok | error (ec : ErrorCode), where ok is the answer

resulting from a successful execution of an action. One-step execution with error
management preserves valid states.

Lemma 1 (Validity is invariant).

∀ (s s′ : AndroidST)(a : Action)(r : Response), s ֒
a/r
−−→ s′ → valid_state(s′)

The results presented in this work are obtained from valid states of the system.

3.4 Reasoning over the specified reference monitor

In this section we present and discuss some relevant properties that can be
established concerning the Android Marshmallow security framework. In partic-
ular we shall focus on vulnerabilities that if exploited would allow violations
to the intended security policy. The helper functions and predicates used to
define the properties and lemmas discussed in this paper are presented and de-
scribed in Table 2. The full formal definition of the lemmas as well as those
of other security properties that were formally analyzed can be found in [15],
along with their corresponding proofs. We also include an informal descrip-
tion of each property, in italics. The first property presents a controversial
characteristic of Android’s new permission system. For example, as the dan-
gerous permissions READ_CONTACTS (required for reading the contact list)
and WRITE_CONTACTS (required for writing the contact list) both belong to
the permission group CONTACTS, none of them can be individually granted. In-
stead, the application must be granted the permission group CONTACTS, giving
it the right to both reading and writing the user’s contact list. This violates the
intended least privilege security policy claimed by the designers of the platform.

Property 1 (No fine control over grouped permissions)
∀(s, s′ : AndroidST)(p : Perm)(g : PermGroup)(app : AppId),

permissionIsGrouped(p) → ¬s ֒
grant p app/ok
−−−−−−−−−−→ s′

4 Given a state s, an action a and an error code ec, ErrorMsg(s, a, ec) holds iff error ec
is an acceptable response when the execution of a is requested on state s.
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Function/Predicate Description
appHasP ermission(app, p, s) holds iff app is considered to have permission p on state s.
canGrant(cp, u, s) holds iff the content provider cp allows the delegation of permis-

sions over the resource at URI u on state s.
canStart(c′, c, s) holds if the app containing component c′ (installed in s) has

the required permissions to create a new running instance of c.
cmpP rotectedByP erm(c) returns the permission by which the component c is protected.
componentIsExported(c) holds iff the component c is exported and can be accessed from

other applications.
existsRes(cp, u, s) holds iff the URI u belongs to the content provider cp on s.
getAppF romCmp(c, s) given a component c on s, returns the app to which it belongs.
getAppRequestedP erms(m) given the manifest m of an app, returns the set of permissions

it uses.
getDefP ermsF orApp(app, s) returns the set of permissions defined by app on state s.
getGrantedP ermsF orApp(app, s) returns the set of indvidual permissions granted to app on s.
getInstalledApps(s) returns the set of identifiers of the applications installed on s.
getManifestF orApp(app, s) returns the manifest of application app on state s.
getP ermissionId(p) returns the identifier of permission p.
getP ermissionLevel(p) returns the permission level of permission p.
getRunningComponents(s) returns the set of pairs consisting of a running instance id, and

its associated component currently running on state s.
inApp(c, app, s) holds iff the component c belongs to application app on state s.
permissionIsGrouped(p) holds iff permission p belongs to any permission group.
permissionRequiredF orRead(c) returns the permission required for reading the component.
permSACs(p, sac) holds iff permission p is required for performing the system call

sac (of type SACall).

Table 2. Helper functions and predicates

Android’s permission system is not granular enough for granting a proper subset of
the set of permissions that belong to a group.

The next property formalizes another weak point in the specification of Android’s
new permission system: in a valid state an application may have the right of
writing the contact list (WRITE_CONTACTS) even if this permission was never
individually granted.

Property 2 (Implicit individual permission granting)
∃(s : AndroidST)(p : Perm)(app : AppId), valid_state(s) ∧
getP ermissionLevel(p) = dangerous ∧ p /∈ getGrantedP ermsF orApp(app,s) ∧
p /∈ getDefP ermsF orApp(app,s) ∧ appHasP ermission(app,p, s)

Applications may obtain privileges that were never granted to it.

In Android 6 an application that wishes to send information through the
network must have the permission INTERNET but, since this permission is of
level normal, any application that lists it as used in its manifest file has the right
to access the network in an implicit and irrevocable way. Once again, this has
been criticized due to the potential information leakage it allows. The following
property formally generalizes this situation and embodies a reasonable argument
to roll back this security issue introduced in Android Marshmallow.

Property 3 (Internet access implicitly and irrevocably allowed)
∀(s : AndroidST)(sac : SACall)(c : Comp)(ic : iComp)(p : Perm),
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valid_state(s) → permSAC(p, sac) →
getP ermissionLevel(p) = normal → getP ermissionId(p) ∈
getAppRequestedP erms(getManifestF orApp(getAppFromCmp(c,s), s)) →

(ic, c) ∈ getRunningComponents(s) → s ֒
call ic sac/ok
−−−−−−−−−→ s

If the execution of an Android API call only requires permissions of level normal,
it is enough for an application to list them as used on its manifest file to be allowed to
perform such call.

4 A certified reference validation mechanism

The implementation of the Android security system that we have developed
consists of a set of Coq functions such that for every predicate involved in the
axiomatic specification of action execution there exists a function which stands
for the functional counterpart of that predicate. In this section we show how
the correctness of the implementation is certified by a formal proof that estab-
lishes its soundness with respect to the inductive (axiomatic) semantics of the
Android security mechanisms. The execution of an action has been implemented
as a step function that given a system state s and an action a invokes the func-
tion that implements the execution of a in s and returns an object res of type

Result
def
= {resp : Response, st : AndroidST}, where res.resp is either an

error code ec, if the precondition of the actions does not hold in state s, or
otherwise the value ok, and the state res.st represents the execution effect. The
step function acts basically as an action dispatcher. Figure 2, which shows the
structure of the dispatcher, details the branch corresponding to the dispatching
of action install, which is the action we shall use along this section to illustrate
the working of the implementation. The functions invoked in the branches, like

Definition step(s, a) :=
match a with

| . . . ⇒ . . .
| install app m c lRes ⇒ install_safe(app, m, c, lRes, s)
| . . . ⇒ . . .

end.

Definition install_safe(app, m, c, lRes, s) : Result :=
match install_pre(app, m, c, lRes, s) with

| Some ec ⇒ {error(ec), s}
| None ⇒ {ok, install_post(app, m, c, lRes, s)}

end.

Fig. 2. The step function and execution of install action

install_safe, are state transformers whose definition follows this pattern: first it
is checked whether the precondition of the action is satisfied in state s, and then,
if that is the case, the function that implements the execution of the action is in-
voked. Otherwise, the state s, unchanged, is returned along with an appropriate
response specifying an error code which describes the failure. In this figure we
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also describe the function that implements the execution of the install action.
The Coq code of this function, together with that of the remaining functions, can
be found in [15]5. The function install_pre is defined as the nested validation of
each of the properties of the precondition, specifying which error to throw when
one of them doesn’t hold. The function install_post implements the expected
behavior of the install action: the identifier of the application is prepended to
the list of installed applications, both the list of granted permission and the list
of granted permission groups are initialized as empty for it, its resource list is
added to the system, and its manifest, certificate and defined permissions are
included in the system state6.

4.1 Soundness

We proceed now to outline the proof that the functional implementation of the
security mechanisms of Android correctly implements the axiomatic model. This
correctness property has been formally stated as a soundness theorem and veri-
fied using Coq [15].

Theorem 1 (Soundness of Android security system implementation).

∀ (s : AndroidST) (a : Action), valid_state(s) → s ֒
a/step(s,a).resp
−−−−−−−−−−→ step(s, a).st

The proof of this theorem follows by, in the first place, performing a case analysis
on P re(s, a) (this predicate is decidable) and then in the case that P re(s, a)
applying Lemma 2; otherwise applying Lemma 4.

Lemma 2 (Soundness of valid execution).
∀ (s : AndroidST) (a : Action), valid_state(s) → P re(s, a) →

s ֒
a/ok
−−−→ step(s, a).st ∧ step(s, a).resp = ok

The proof of Lemma 2 proceeds by applying functional induction on step(s, a)
and then by providing the corresponding proof of soundness of the function that
implements the execution of each action. Thus, in the case of the action install

we have stated and proved Lemma 3. This lemma, in turn, follows by performing
a case analysis on the result of applying the function install_pre on s and the
action: if the result is an error code then the thesis follows by contradiction.
Otherwise, it follows by the correctness of the function install_post.

Lemma 3 (Correctness of install execution).
∀ (s : AndroidST) (app : App) (m : Manifest) (c : Cert) (lRes : list Res),
valid_state(s) → P re(s, install app m c lRes) →
P ost(s, install app m c lRes, install_post(app, m, c, lRes, s))

As to Lemma 4, the proof also proceeds by first applying functional induction on
step(s, a). Then, for each action a, it is shown that if ¬P re(s, a) the execution of
the function that implements that action yields the values returned by the branch
corresponding to the case that the function that validates the precondition of
the action a in state s fails, i.e., an error code ec and the (unchanged) state s.

5 We omit here the formal definition of these functions due to space constraints.
6 We implement the sets in the model with lists of Coq.



12

Lemma 4 (Soundness of error execution).
∀ (s : AndroidST) (a : Action), valid_state(s) → ¬P re(s, a) → ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = error(ec) ∧ ErrorMsg(s, a, ec)

4.2 Reasoning over the certified reference validation mechanism

We have modeled the execution of the permission validation mechanism during
a session of the system as a function that implements the execution of a list of
actions starting in an (initial) system state. The output of the execution, a trace,
is the corresponding sequence of states.

Function trace (s : AndroidST) (actions : list Action) : list AndroidST :=
match actions with

| nil ⇒ nil
| action :: rest ⇒ let s′ := (step s action).st in s′ :: trace s′ rest

end.

We have stated and proved several security properties over the function trace.
In what follows s, initstate, sndstate and laststate stand for variables of type
AndroidST, p is a variable of type Perm, app and app′ of type AppId and l of type
list Action. We present first a property that formally states that in version 6 of
the OS for an application to have a non-grouped dangerous permission it must
be explicitly granted to it.

Property 4 (Dangerous permissions must be explicitly granted)
valid_state(initState) → app ∈ getInstalledApps(initState) →
getP ermissionLevel(p) = dangerous → permissionIsGrouped(p) = None →
appHasP ermission(app,p, lastState) →
¬appHasP ermission(app,p, initState) → uninstall app /∈ l →
last(trace(initState, l), initState) = lastState → grant p app ∈ l

A non-grouped dangerous permission can only be explicitly granted to an application.

With the following property we formally state, and prove, that if an application
used to have a permission that was later revoked, only re-granting it will allow
the application to have it again.

Property 5 (Revoked permissions must be regranted)
valid_state(initState) → getP ermissionLevel(p) = dangerous →
permissionIsGrouped(p) = None → p /∈ getDefP ermsF orApp(app,initState) →
step(initState, revoke p app).st = sndState →
step(initState, revoke p app)).resp = ok → uninstall app /∈ l → grant p app /∈ l →
last(trace(sndState, l), sndState) = lastState →
¬appHasP ermission(app,p, lastState)

If an application used to have a permission that was later revoked, only regranting
it will allow the application to have it again.

Certain assertions on which a developer could rely in previous versions of An-
droid OS do not hold in its latest version. The following property states that
a running component may have the right of starting another one on a certain
state, but may not be able to do so at a later time.
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Property 6 (The right to start an external component is revocable)
∀(c : Comp)(act : Activity) valid_state(initState) →
getP ermissionLevel(p) = dangerous → permissionIsGrouped(p) = None →
app 6= app′ → p /∈ getDefP ermsF orApp(app,initState) → inApp(c, app, initState) →
inApp(act, app′, initState) → cmpP rotectedByP erm(act) = Some p →
canStart(c, act, initState) → ∃(l : list Action), uninstall app /∈ l ∧
uninstall app′ /∈ l ∧ ¬canStart(c, act, last(trace(initState, l), initState))

A running component may have the right of starting another one on a certain state,
but may not be able to do so at a later time.

When an application app is granted a permission p to access certain resource,
it is also given the right to delegate this ability to another application, say
app′, to access that same resource on its behalf. However, if p is revoked from
the application app, the permission delegations is not invalidated and thus the
application app′ may still be able to access the resource. This property is a proof
that the current specification allows a behavior which is arguably against the
user’s will.

Property 7 (Delegated permissions are not recursively revoked)
∀(ic, ic′ : iComp)(c, c′ : Comp)(u : uri)(cp : CP rovider),
valid_state(s) → step(s, grant p app).resp = ok →
getAppF romCmp(c,s) = app → getAppF romCmp(c′, s) = app′ →
(ic, c) ∈ getRunningComponents(s) → (ic′, c′) ∈ getRunningComponents(s) →
canGrant(cp, u, s) → existsRes(cp, u, s) → componentIsExported(cp) →
permissionRequiredF orRead(cp) = Some p →
let opsResult := trace(s, [grant p app, grantP ic cp app′ u Read,
revoke p app] in step(last(opsResult,s), read ic′ cp u).resp = ok

In Android 6 if a permission p is revoked for an application app not necessarily shall
be revoked for the applications to which app delegated p.

5 Related work

Several analyses have been carried out concerning the security of the Android
system [11,18,10,12,13]. Few works, however, pay attention to the formal aspects
of the permission enforcing framework. In particular, Shin et al. [20,21] build
a formal framework that represents the Android permission system, which is
developed in Coq, as we do. However, that work does not consider several aspects
of the platform covered in our model, namely, the different types of components,
the interaction between a running instance and the system, the R/W operation
on a content provider, the semantics of the permission delegation mechanism
and novel aspects of the security model, such as the management of runtime
permissions.

Moving away from OS verification, many works have addressed the problem
of relating inductively defined relations and executable functions, in particular in
the context of programming language semantics. For instance, Tollitte et al [23]
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show how to extract a functional implementation from an inductive specification
in the Coq proof assistant. Similar approaches exist for Isabelle, see e.g. [7].
Earlier, alternative approaches such as [5,6] aim to provide reasoning principles
for executable specifications.

6 Conclusion and future work

We have presented the development of an exhaustive formal specification of the
Android security model that includes elements and properties that have been
partially analyzed in previous work. We have enhanced the model considered
in [8,9] with an explicit treatment of errors and with the latest version of the se-
curity mechanisms of the platform, which make it possible to grant permissions
at run time. We also present the formaization of security properties concerning
the Android permission mechanisms that have not previously been formally ver-
ified and proved. Using the programming language of the proof-assistant Coq

we have defined a functional implementation of the reference validation mecha-
nism, certified its correctness with respect to the axiomatic specification of the
reference monitor and derived a certified Haskell prototype (CertAndroidSec)
applying the program extraction mechanism provided by the proof assistant. In
Appendix B, we provide listings of part of the Haskell code that has been auto-
matically generated using Coq. The full certified code is available in [15]. The
formal development is about 21k LOC of Coq, including proofs, and constitutes
a suitable basis for reasoning about Android’s permission model and security
mechanisms.

We plan to use the certified extracted algorithm as a testing oracle and also
to conduct verification activities on actual implementations of the platform. In
particular, we are investigating the use of that algorithm to compare the results
of executing an action on a real Android platform and executing that same action
on the correct program. This would allow us to monitor the actions performed
in a real system and assessing whether the intended security policy is actually
enforced by the particular implementation of the platform.
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A Valid state

The model formalizes a notion of valid state that captures several well-formedness
conditions. It is formally defined as a predicate valid_state on the elements of type
AndroidST. This predicate holds on a state s if the following conditions are met:

– all the components both in installed applications and in system applications have
different identifiers;

– no component belongs to two different applications present in the device;
– no running component is an instance of a content provider;
– every temporally delegated permission has been granted to a currently running

component and over a content provider present in the system;
– every running component belongs to an application present in the system;
– every application that sets a value for a resource is present in the system;
– the domains of the partial functions Manifests, Certs and AppDefPS are exactly the

identifiers of the user installed applications;
– the domains of the partial functions AppPS and PermsGr are exatcly the identifiers

of the applications in the system, both those installed by the users and the system
applications;

– every installed application has an identifier different to those of the system appli-
cations, whose identifiers differ as well;

– all the permissions defined by applications have different identifiers;
– every partial function is indeed a function, that is, their domains don’t have re-

peated elements;
– every individually granted permission is present in the system; and
– all the sent intents have different identifiers.

All these safety properties have a straightforward interpretation in our model. We

omit here the formal definition of valid_state due to space constraints. The full formal

definition of the predicate is available in [15].

B Generated code

Just for the sake of illustration, in what follows we provide listings of part of the
Haskell code that has been automatically generated using the Coq extraction
mechanism. The code is annotated with inline comments and manually indented
to fit on the page width.

We have included the definition of the System, as a datatype and the com-
plete definition of the action install and the code of the dispatcher, which
implements the execution of an action in a given state.
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Listing 1.1. The System

{− The S y s t e m i s r e p r e s e n t e d a s a d a t a t y p e
− c o m p r i s i n g a S t a t e a nd an E n v i r o n m e n t
−}

data System =
Sys S t a t e Environment

−− The E n v i r o n m e n t d a t a t y p e
data Environment =

Env
−− The m a n i f e s t a nd c e r t i f i c a t e o f i n s t a l l e d u s e r a p p l i c a t i o n s

( Mapping IdApp Man i f es t )
( Mapping IdApp Cert )

−− The p e r m i s s i o n s d e f i n e d b y t h e a p p l i c a t i o n s
( Mapping IdApp ( ( [ ] ) Perm0 ) )

−− S y s t e m a p p l i c a t i o n s
( ( [ ] ) SysImgApp )

−− The d a t a t y p e S t a t e
data S t a t e =

St
−− The i n s t a l l e d u s e r a p p l i c a t i o n s

( ( [ ] ) IdApp )
−− G r a n t e d g r o u p a nd i n d i v i d u a l p e r m i s s i o n s f o r e a c h a p p l i c a t i o n

( Mapping IdApp ( ( [ ] ) IdGrp ) )
( Mapping IdApp ( ( [ ] ) Perm0 ) )

−− R u n n i n g c o m p o n e n t s a nd t h e i r i n s t a n c e s
( Mapping ICmp Cmp)

−− P e r m a n e n t a nd t e m p o r a r y p e r m i s s i o n d e l e g a t i o n s
( Mapping ( ( , ) ( ( , ) IdApp CProvider ) Uri ) PType )
( Mapping ( ( , ) ( ( , ) ICmp CProvider ) Uri ) PType )

−− V a l u e s o f r e s o u r c e s
( Mapping ( ( , ) IdApp Res ) Val )

−− S e n t i n t e n t s
( ( [ ] ) ( ( , ) ICmp I n t e n t 0 ) )

Listing 1.2. Install checks

{− I n s t a l l s e m a n t i c s :
− i n s t a l l _ p r e c h e c k s w h e t h e r an i n s t a l l a t i o n c a n t a k e p l a c e i n a s t a t e .
− I t r e t u r n s t h e c o r r e s p o n d i n g E r r o r C o d e i f t h e i n s t a l l a t i o n i s n o t a l l o w e d
−}

i n s t a l l _ p r e : : IdApp −> Man i f es t −> Cert −> ( ( [ ] ) Res ) −>
System −> Prelude .Maybe ErrorCode

i n s t a l l _ p r e app0 m c l Res s =
−− The a p p l i c a t i o n c a n n o t b e a l r e a d y i n s t a l l e d

case i s A p p I n s t a l l e d B o o l app0 s of {
Prelude . True −> Prelude . Just A p p _ al read y _ i n s tal l ed ;
Prelude . False −>

−− C o m p o n e n t s i n t h e a p p l i c a t i o n m u s t h a v e d i f f e r e n t i d e n t i f i e r s
case h a s _ d u p l i c a t e s idCmp_eq (map getCmpId (cmp m) ) of {

Prelude . True −> Prelude . Just Duplicated_cmp_id ;
Prelude . False −>

−− The d e f i n e d p e r m i s s i o n s m u s t h a v e d i f f e r e n t i d e n t i f i e r s .
case h a s _ d u p l i c a t e s idPerm_eq (map idP ( usrP m) ) of {

Prelude . True −> Prelude . Just Duplicated_perm_id ;
Prelude . False −>

−− The new c o m p o n e n t s ’ i d s m u s t d i f f e r f r o m t h o s e a l r e a d y p r e s e n t i n t h e s y s t e m .
case e x i s t s b (\ c0 −> cm p I d I n S tateB ool c0 s ) (cmp m)
of {

Prelude . True −> Prelude . Just Cmp_already_defined ;
Prelude . False −>

−− No p e r m i s s i o n d e f i n e d b y o t h e r a p p l i c a t i o n c a n b e r e d e f i n e d .
case Prelude . not ( authPermsBool m s ) of {

Prelude . True −> Prelude . Just

Perm_already_defined ;
Prelude . False −>

−− A l l t h e i n t e n t f i l t e r s m u s t b e w e l l d e f i n e d .
case a n y D e f i n e s I n t e n t F i l t e r I n c o r r e c t l y (cmp m)
of {

Prelude . True −> Prelude . Just

F a u l t y _ i n t e n t _ f i l t e r ;
−− I f e v e r y t h i n g i s ok , t h e n no e r r o r i s r e t u r n e d .

Prelude . False −> Prelude . Nothing}}}}}}
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Listing 1.3. Install effect

{− The f u n c t i o n i n s t a l l _ p o s t c o m p u t e t h e s t a t e r e s u l t i n g f r o m
− i n s t a l l i n g a f r e s h a p p l i c a t i o n
−}

i n s t a l l _ p o s t : : IdApp −> Man i f es t −> Cert −> ( ( [ ] ) Res ) −>
System −> System

i n s t a l l _ p o s t app0 m c l Res s =
l e t { o l d s t a t e = s t a t e s } in

l e t { ol d en v = environment s } in

−− The a p p l i c a t i o n i d e n t i f i e r i s a p p e n d e d t o t h e l i s t o f i n s t a l l e d a p p l i c a t i o n s
Sys ( St ( ( : ) app0 ( apps o l d s t a t e ) )

−− w i t h no p e r m i s s i o n o r p e r m i s s i o n g r o u p s g r a n t e d ,
(map_add idApp_eq ( grantedPermGroups o l d s t a t e ) app0 ( [ ] ) )
(map_add idApp_eq ( perms o l d s t a t e ) app0 ( [ ] ) ) ( ru n n i n g
o l d s t a t e )
( delPPerms o l d s t a t e ) ( delTPerms o l d s t a t e )

−− i t s r e s o u r c e s a r e i n i t i a l i z e d w i t h t h e d e f a u l t v a l u e , a nd
( addNewResCont app0 ( res C on t o l d s t a t e ) l Res ) ( s e n t I n t e n t s
o l d s t a t e ) )

−− i t s m a n i f e s t , c e r t i f i c a t e a nd p e r m i s s i o n s a r e s t o r e d i n t h e s t a t e .
( Env
(map_add idApp_eq ( m a n i f e s t ol d en v ) app0 m)
(map_add idApp_eq ( c e r t ol d en v ) app0 c )
(map_add idApp_eq ( defPerms ol d en v ) app0 ( nonSystemUsrP m) )
( systemImage ol d en v ) )

Listing 1.4. Safe install

{− The f u n c t i o n i n s t a l l _ s a f e c h e c k s f o r e r r o r s u s i n g t h e f u n c t i o n i n s t a l l _ p r e ,
− r e t u r n i n g t h e s t a t e u n m o d i f i e d a l o n g w i t h t h e e r r o r c o d e , i f t h e r e i s o n e .
− O t h e r w i s e , i t c o m p u t e s t h e new s t a t e b y e x e c u t i n g i n s t a l l _ p o s t
−}

i n s t a l l _ s a f e : : IdApp −> Man i f es t −> Cert −> ( ( [ ] ) Res ) −> System −> Res u l t0
i n s t a l l _ s a f e app0 m c l Res s =

case i n s t a l l _ p r e app0 m c l Res s of {
Prelude . Just ec −> Res u l t ( Error0 ec ) s ;
Prelude . Nothing −> Res u l t Ok ( i n s t a l l _ p o s t app0 m c l R e s s )}

Listing 1.5. Dispatcher

{− The f u n c t i o n s t e p i s j u s t a d i s p a t c h e r w h i c h
− p e r f o r m s p a t t e r n m a t c h i n g on t h e a c t i o n t o b e
− e x e c u t e d a nd c a l l s t h e c o r r e s p o n d i n g f u n c t i o n
− ( f o r e x a m p l e , i n s t a l l _ s a f e )
−}

s t e p : : System −> A cti on −> Res u l t0
s t e p s a =

case a of {
I n s t a l l app0 m c l Res −> i n s t a l l _ s a f e app0 m c l Res s ;
U n i n s t a l l app0 −> u n i n s t a l l _ s a f e app0 s ;
Grant p app0 −> gran t_ s af e p app0 s ;
Revoke p app0 −> rev ok e_ s af e p app0 s ;
GrantPermGroup grp app0 −> gran tgrou p _ s af e grp app0 s ;
RevokePermGroup grp app0 −> rev ok egrou p _ s af e grp app0 s ;
H as Perm i s s i on a0 p −> Res u l t Ok s ;
Read0 i c cp u −> read _ s af e i c cp u s ;
Write0 i c cp u v −> w r i t e _ s a f e i c cp u v s ;
S t a r t A c t i v i t y i n t t i c −> s t a r t A c t i v i t y _ s a f e i n t t i c s ;
S t a r t A c t i v i t y F o r R e s u l t i n t t n i c −> s t a r t A c t i v i t y _ s a f e i n t t i c s ;
S t a r t S e r v i c e i n t t i c −> s t a r t S e r v i c e _ s a f e i n t t i c s ;
SendBroadcast i n t t i c p −> s en d B road cas t_ s af e i n t t i c p s ;
SendOrderedBroad cast i n t t i c p −> s en d B road cas t_ s af e i n t t i c p s ;
S en d S ti ck y B road cas t i n t t i c −> s e n d S t i c k y B r o a d c a s t _ s a f e i n t t i c s ;
R e s o l v e I n t e n t i n t t a0 −> r e s o l v e I n t e n t _ s a f e i n t t a0 s ;
R e c e i v e I n t e n t i n t t i c a0 −> r e c e i v e I n t e n t _ s a f e i n t t i c a0 s ;
Stop i c −> s t o p _ s a f e i c s ;
GrantP i c cp a0 u pt −> gran tP_ s af e i c cp a0 u pt s ;
RevokeDel i c cp u pt −> rev ok eD el _ s af e i c cp u pt s ;
C a l l i c s ac −> c a l l _ s a f e i c s ac s }
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