arXiv:1709.04152v1 [cs.PL] 13 Sep 2017

Deadlock detection of Java Bytecode

Abel Garcia and Cosimo Laneve

Dept. of Computer Science and Engineering, University of Bologna — INRIA Focus

Abstract. This paper presents a technique for deadlock detection of
Java programs. The technique uses typing rules for extracting infinite-
state abstract models of the dependencies among the components of
the Java intermediate language — the Java bytecode. Models are sub-
sequently analysed by means of an extension of a solver that we have
defined for detecting deadlocks in process calculi. Our technique is com-
plemented by a prototype verifier that also covers most of the Java fea-
tures.

1 Introduction

Deadlocks are common flaws of concurrent programs that occur when a set of
threads are blocked because each one is attempting to acquire a lock held by
another one. Such errors are difficult to detect or anticipate, since they may not
happen during every execution, and may have catastrophic effects for the over-
all functionality of the software system. At the time of writing this paper, the
Oracle Bug Databasdl reports more than 40 unresolved bugs due to deadlocks,
while the Apache Issue TrackerB reports around 400 unresolved deadlock bugs.
These two databases refer to programs written in Java, a mainstream program-
ming language in a lot of domains, such as web and cloud applications, user
applications and mobile applications.

The objective of our research is to design and implement a technique capable
of detecting potential deadlock bugs of Java programs at static time. This objec-
tive is difficult because Java has a complex concurrency model: it uses threads
that may perform read/write operations over shared variables and whose ex-
ecution depends on the scheduling strategy implemented in the Java Virtual
Machine (JVM). In addition, Java, being a full-fledged programming language,
includes an extensive standard library with lots of features implemented in na-
tive language.

To reduce the complexity of our work, we decided to address the Java byte-
code, namely 198 instructions that are the compilation target of every Java
application and have a reference semantics that is defined by the JVM behaviour.
Therefore, it is possible to deliver correctness results without narrowing/oversim-
plifying our original goal. In this paper, we present our technique on a subset of
Java bytecode, called JVML,, which includes basic instructions for concurrency,
such as thread creations, synchronizations, and creations of new objects. The
language is defined in Section

! http://bugs.java.com/
2 https://issues.apache.org/jira

http://arxiv.org/abs/1709.04152v1

The technique consists of two stages. The first stage defines a type system
that reconstructs the concurrent behaviour of methods. The key principles are
the following ones. Each method has an associated type that depends on the
type of the arguments (the object “this” is one argument) and that expresses
the concurrent behaviour. This “concurrent behaviour” reports (i) the sequence
of locks that has been acquired/released by the method, (i) the threads created,
and (i) the methods that have been invoked. It includes the analysis of aliases
that traces the creation of new objects and their copies (because JVML4 instruc-
tions may create and copy objects). The alias analysis is performed in a symbolic
way by using a finite set of names: this is a critical part of our technique because
methods may create threads and, when methods are either recursive or iterative,
the set of created threads may be infinite. In particular, we had to devise finite
representatives of (infinite sets of) thread names that are sound with respect to
the (deadlock) analysis. Section [2lreports a code that can be written in (a simple
extension of) JVML, and that is problematic as regards deadlock detection. Sec-
tion Ml describes the type system and Section [B] overviews the typing of complex
features of JVML.

The second stage of our technique defines the analysis of the behavioural
model. In fact, the three reports above — (i), (ii), and (i) — are terms in a
modelling language that extend so-called lams [7J6l9]. Lams are conjunctions
and disjunctions of object dependencies and method invocations and the exten-
sion has been necessary for modelling Java reentrant locks. In particular, our
dependencies also carry thread names — (a,b); means that the thread ¢, which
owns the lock of a, is going to lock b. In Java, the lam (a,a); is not a circular
dependency because it means that ¢ is acquiring the same lock twice. Because of
this extension, the algorithm for detecting circularities in lams is different than
the one in [6J9]. We address this issue in Section

Our deadlock detection technique has been prototyped and the verifier is
called JaDA. While the type system in this paper simply checks static information,
JaDA infers the behavioural types from the bytecode. Inference is important in
practice because it lightens the analysis but checking is crucial for type safety A
JaDA includes several features of JVML; this has made possible to deliver initial
assessments of the tool, which are discussed in Section [1l Section B discusses
related work and reports our concluding remarks.

2 Overview of JVML and of our technique

Figure[lreports a Java class called Network and some of its JVML4 representation.
The corresponding main method creates a network of n threads — the philosophers
— by invoking buildNetwork — say t1, - - - ,t, — that are all potentially running in
parallel with the caller — say to. Every two adjacent philosophers share an object
— the fork —, which is also created by buildNetwork. Every thread ¢; locks the
two adjacent forks, that are passed as (implicit) arguments of the thread, and
terminates — this is performed by the method takeForks. It is well-known that
when the network is a table (it is circular — the thread ¢,, is sharing one of its

3 The technical details of type safety appear in the full paper, where we also overview
the inference system of JaDA.

class Network{ public void buildNetwork(int n, Object x, Object y)

0 iload_1 //n
public void main(int n){ 1 ifne 13
Object x = new Object(); 4 aload_0 //this
Object y = new Object(); 5 aload_2 //x
buildNetwork(n, x, y); //no deadlock 6 aload_3 /1y
buildNetwork(n, x, x); // deadlock 7 invokevirtual 24 //takeForks(x, y):void
} 10 goto 50
13 new 3
public void buildNetwork(int n, 16 dup
Object x, Object y){ 17 invokespecial 8 //Object()
if (n==0) { 20 astore 4 //z
takeForks(x,y) ; 22 new 26
} else { 25 dup
final Object z = new Object() ; 26 aload_0 //this
Thread t = new Thread(){ 27 aload_2 //x
public void run(){ 28 aload 4 //z
takeForks(x,z) ; 30 invokespecial 28 //Network$1(this, x, z)
3 33 astore 5 //thr
t.start(); 35 aload 5 //thr
this.buildNetwork(n-1,z,y) ; 37 invokevirtual 31 //start():void
} 40 aload_0 //this
} 41 iload_1 //n
42 icomst_1
public void takeForks(Object x, 43 isub
Object y){ 44 aload 4 //z
synchronized(x){ synchronized(y){ } } 46 aload_3 /1y
47 invokevirtual 36 //buildNetwork(n-1, z, y):void
¥ 50 return

Fig. 1. Java Network program and corresponding bytecode (only the buildNetwork
method).

forks with) and all the threads have a symmetric strategy of locking objects
then a deadlock may occur. On the contrary, when either the network is not
circular or one thread has an anti-symmetric strategy, no deadlock will ever occur.
Therefore buildNetwork(n,x,y) is deadlock free, while buildNetwork(n,x,x)
is deadlocked (when n > 0).

The problematic issue of Network is that the number of threads is not known
statically because n is an argument of main. This is displayed in the bytecode of
buildNetwork in Figure[[by the instruction at address 30 where a new thread is
created and by the instruction at address 37 where the thread is started. The re-
cursive invocation that causes the (static) unboundedness is found at instruction
47. Our technique is powerful enough to cope with such problems and to predict
the correct behaviour of the code of Figure [l and the faulty one if we comment
buildNetwork(n,x,y) and de-comment buildNetwork(n,x,x). The technique
works as follows. It infers abstract methods’ behaviors by computing types, called
lams, of their bytecode bodies. These lams abstract each bytecode instruction by
dropping the non-relevant information for the deadlock analysis (e.g. operations
on integer variables). In practice, the relevant operations for deadlock analysis
are: locking operations (monitorenter and monitorexit instructions), thread
spawning operations, function invocations and objects’ structures. Thereafter
the abstract model is analysed by a solver.

3 The language JVML,

JVMLy is a restriction of JVML that includes basic constructs and instructions for
concurrency A In JVMLy, a program is a collection of class files whose methods
have bodies written in JVMLy bytecode. This bytecode is a partial map from ad-
dresses ADDR to instructions. Addresses, ranged over by L, L/, - - - are intended
to be natural numbers and we use the function L + 1 that returns the least
address that is strictly greater than L. When P is a program, we write dom(P)
to refer to its domain (the set of addresses) and we assume that 0 € dom(P) for
every bytecode P.

We use a number of names: for classes, ranged over by C, D, - - -, for fields,
ranged over by £, £/, ---, for methods, ranged over by m, m’, -- -, and for local
variables, ranged over by z, y, ---. A possible empty sequence of names or

syntactic categories of the following grammar is written by over-lining the name
or the syntactic category, respectively. For instance a sequence of local variables
is written T. However, when we need to access to the elements of a sequence, we
use the notation x1,--- ,x,. Class files CF are defined by the grammar:

CF ::
FD ::

class C {fields : FD methods : MD} MD ::=Tm (C,T) P
Cf:T T ==T]|int|C

where “fields :” and “methods :” are keywords and T is a special type that
include all the other types (any value of any type has also type T). This type
will represent values that are unusable in our static semantics. The type name
C represents a class type, which is never recursive in JVMLg,.

Instructions Instr of JVUML, bytecode are of the following form:

Instr ::= inc | pop | push | load z | store « | if L | goto L
| newC | putfieldC.f : T | getfieldC.f : T | monitorenter | monitorexit
| invokevirtual C.m(T) | start C | return

The informal meaning of these instructions is as follows:

— inc increments the content of the stack; pop and push, respectively, pops
an element from the stack and pushes the integer 0 on the stack; load x
and store x respectively loads the value of x on the stack and pops the top
value of the stack by storing it in x; if L pops the top value of the stack
and either jumps to the instruction at address L, if it is nonzero, or goes to
the next instruction; goto L is the unconditional jump;

— new C allocates a new object of type C, initializes it and pushes it on top of the
stack; putfield C.f : T pops the value on the stack and the underlying object
value, and assigns the former to the field £ of the latter; getfield C.f : T
pops the object on the stack and pushes the value in the field £ of that
object;

— monitorenter, monitorexit are the synchronization primitives that pop
the object on the stack and lock and unlock it, respectively;

4 Actually, JVML, has a minor difference with respect to JVML: in JVML, local variables
are addressed by non-negative integers instead of names.

— invokevirtual C.m(Tq,--- ,T,) pops n values from the stack (the arguments
of the invocation) and dispatches the method m on the object on top of the
stack; when the method terminates, the returned value is pushed on the
stack;

— start C creates and starts a new thread for the object on top of the stack.
This operation corresponds to invokevirtual java/lang/Thread/start()
on a thread of class C in JVML. We separate it from invokevirtual in order
to provide more structure to our semantics (because it has an effect on the
set of threads — see the operational semantics in the Appendix, where we
also consider the instruction join);

— return terminates program execution.

The bytecode in Figure[Ilis written in a sugared extension of JVML,. In particular,
aload and iload correspond to our load instruction (when the argument is an
object or an integer, respectively), ifne corresponds to if, dup duplicates the
top of the stack, sub subtracts the element on top of the stack from the last-by-
one, invokespecial is the method invocation of the constructor of the class.

In order to simplify the presentation, in this paper we assume that fields are
read-only as they cannot be modified after the initialisation (which is done by
constructors that, in turn, are sequential) A

4 The type system

The purpose of the type system is to associate lams to JVML; bytecodes. Since
JVML, is the target (of large part) of Java, the association is complex because
we must deal with objects and aliasing, object creation and updates performed
by constructors, and the concurrent operations — creation of new threads, lock
and unlock operations. Therefore the details are pretty technical. In this paper
we overview the type system by discussing features that are increasingly difficult.
In particular, we will discuss one typing rule — that of invokevirtual — and we
will study the basic, sequential case, the case of invocation of constructors, and
the case of invocation of a concurrent thread. The complete set of rules appears
in the full paper.

Typing rules associate types, which are lams, to JVML, instructions by means
of judgments. Typically, these judgments are abstractions of the machine states.
In case of JVM, the state is a memory, called heap and the set of running threads.
In turn, every thread is a stack of activation records — each one containing the
address of the instruction to be performed, a stack, and a local memory — plus the
sequence of locks owned. For example, in the case of invokevirtual (without
arguments), the the element on the stack is the called object (which is used by
the JVM to locate the right method body).

A possible judgment for the instruction at address ¢ of the JVML,; program P
is

IVF, S, Z it P:{
where I', called environment, is the abstraction of the heap, F' and S are the
abstraction of the local memory and the stack, respectively, and Z is the sequence

5 The full paper reports the complete analysis that also addresses race conditions.

of locks acquired by the thread. The term ¢ is the lam of the instruction ¢ and ¢
is a symbolic name identifying the thread that is executing the instruction. (At
static time it is not possible to model the stack of activation records).

Environments I', memories F', stacks .S, and sequences of locks Z are defined
by means of types, which are not lams. Types in judgments are more descriptive
than those in JVML; syntax; in particular object types are not just classes C, that
is records [fy : T1,- -+ ,fn : Tp], where £; are the fields of the class. In fact, this
notation is not adequate for dealing with aliasing. For example, let C be a class
with two fields £1 and £ that store objects of class D. If C-objects are represented
by [£1: D, f2 : D] then it is not possible to recover the identities of the values of
f1 and fo; therefore we cannot distinguish the cases when f; and f, store the
same object or two different objects, which is sensible when we compute object
dependencies.

Therefore we decided to use symbolic names, ranged over by a, b, - - -, which
also include void and thread names (threads are objects in Java; we use ¢, ¢, - - -
when a name addresses a thread). Symbolic names allow us to define flattened
types such as [£1:b,f5 : b] and [£1 : b, 2 : ¢], thus separating the two foregoing
cases. Actually, in order to avoid ambiguities with different classes having same
field names, the flattened types also carry the class name, e.g. ([£1 : b, 2 : b],C).

The binding of symbolic names and flattened types is defined by the environ-
ments, ranged over by I, I;, - - -. For example [a — ([f : b],C),b — ([g : int],D)]
is an environment that defines the names a and b. The function typeof (I, a)
returns the type of @ in I

Finally, our type system uses vectors I', F, S, Z that are indexed by the ad-
dresses in dom(P). The elements of these vectors are

I is the environment at address ¢;

— the map F; maps local variables to type values;

— S, is a sequence of type values;

— Z; is the sequence of symbolic names locked at address .

Simple methods. We begin with the rule for invokevirtual of a method that
has no argument, does not modify the carrier and returns void:

P[i] = invokevirtual Cum () i+ 1€ dom(P)
S;=a-S" typeof (I;,a) =C
Liyw=1T; Siyi1=woid-S Fiy1=F Ziy1=2;

I''F,S,Z, i+ P:Cm(a,t,[Z;])

The rule verifies that the top element of the stack is of type C and constraints
the stack S;11 to be the same as S;, except for the top element, which is replaced
by void. The lam of the instruction ¢ indicates that the instruction is a method
invocation: we will discuss this term later; we just notice that [Z;] is the first
name in the sequence Z; (that represents the last object locked by t).

Constructors. We continue by analysing methods that update the carrier, such
as constructors, and return an object. It is usual in Java that the returned object
is new (in the JVM it is a fresh run time name). In the type system we must be

careful with such names. Overall the set of symbolic names used by the type
system must be finite, which is an issue when a new object is created inside an
iteration or a recursion. To overcome this issue, we let symbolic name represent
infinitely many instances of names in these cases. Technically, we use a a function
names(i) that takes an address ¢ and returns a tuple of names whose length is
finite and depends on the address. This function returns a name that may occur
already in the judgment when the instruction is not executed once.

The above rule has no element specifying (i) the type of the returned object
and (i) the number of fresh names created by the invocation. As regards (i), one
could think to extend I" with the typing of methods. Again, this is not adequate
because of our need to trace the identity of objects. For example, let C.m be a
method that returns an object of class C; we must distinguish the cases when
C.m is the identity or returns a new object with the same fields of the carrier, or
with the two fields storing a same object, etc.

Therefore, in order to specify methods’ types that are more informative than
standard types, we decided to use a further map — the behavioural class table,
noted BCT. The types used in the BCT are a variation of the above flattened
types because we completely specify the tree structure of the object (BCT is a
global map; it is not a vector of maps). These types are called structured types
and are ranged over by p, p’, - --. For example

(a[f1 : (b[g: int],D),f2 : (c[g: int],D)],C)

is an object of class C whose symbolic name is a and that stores two different
objects of class D in the fields. There is a simple way to transform a symbolic
name and an environment into a structured type and conversely, to get an en-
vironment out of a structured type. We call these functions mk_tree(I’, a) and
env(p), respectively, and we leave their definitions as an exercise.

Let us discuss two examples of method types in the behavioural class table:

— C.m is the identity; hence it returns the carrier and the type also specifies
that the carrier has not been modified. The method type is

BCT(C.m) = (X,t,0) > (X, X,).

We notice that the type uses variable names, ranged over by X,Y,---, when
the structure of the argument is not relevant. Additionally, the arguments
of C.m are three: the first element is the structured type of the carrier, the
second and the third arguments are two symbolic names. The name ¢ is the
thread that performed the invocation and b is the last object name whose
lock has been acquired by ¢. These two informations are used by the analyser
to build the right dependencies between callers and callees and appear in the
lam ¢ of the return type.

In the above method type, the carrier is addressed by X. This means that
the symbolic name of the carrier is not used in the dependencies of £. When
this name is used, we write BCT(C.m) as

((a[f1: X,£2:Y],C),t,0) > {(a[f1 : X,£2: Y],C), (a[f1: X,£f2:Y],C), &),

which binds the occurrences of a in the return type.

— C.p is the constructor of the class C that returns the carrier where the two
fields have been initialised with the same new object of class D (we assume
D has no field and we shorten ¢[| into ¢). In this case, BCT(C.p) is

((a[f1 : X,£2: Y],C),t,b) —
(ve){(alfi : (¢,D),£2: (¢,D)],C), (alf1: (¢, D),f2: (¢, D)],C), &)

The relevant part of the return type is (v ¢) part. This part specifies that
the name c is new, namely it does not occur in the arguments (a[f; : X, fo:
Y],C),t,b.

The last concept we need for presenting the new rule for invokevirtual is that
of instance of a method type. An instance of BCT(C.p) above when the arguments
are (a/[f1: T,£f2: T],C),t',b) (e.g. o’ has been created without initialising the
fields) is

{(a'[£1: (¢,D), %2 : (¢,D)],C), (a[£1: (¢, D), £2 : (¢/,D)],C), £{&'st' V¢ /g 4).

This term will be written BCT(C.p)((a'[f1: T,£2: T],C), ', ¥')(c).
The type rule for a method C.m that updates the carrier (it is a constructor),
has no argument and returns the updated carrier by creating one object is

P[i] = invokevirtual Cm () i+ 1€ dom(P)
S;i=a-S" typeof(I;,a) =C
p = mk_tree(I;,a) b= names(i) BCT(Cm)(p,t,[Z:])(b) =o', p", £)
Tijr =15 + env(p) + env(p”) Sig1 =root(p')- S Fiyr=F, Ziz1=2;

Ber, I F, S, Z,i ¢ P:Cm(p,t,[Z;]) — p

The new part of this rule is the third line in the premise. In particular, in order
to compute the instance of BCT(C.m), we construct mk_tree(I;, a). The instance
of the return type {p’, p”,) is used to update I'; (in this case p’ = p”, therefore
env(p') = env(p”)). The function root(p) returns the root of the structured type

p-

Concurrent methods. We finally discuss methods that are concurrent. Let C.m
be a method that creates a new thread, say ¢ (and returns it). Since ¢’ runs in
parallel with the current thread, say ¢, the conjunctive effects of ¢ and ¢’ must
be analysed by our tool (the second stage of our technique). To delegate the
analyser to check the consistency of these conjunctive effects, the type system
must record the threads that are created. To this aim, we extend our judgments
with a set collecting such thread names. However, this set may be infinite (when
the method is recursive or iterative). In order to have a more precise analysis, we
distinguish the cases when the thread creation is executed once and those when
the thread creation is executed several times. In the first case, the analyser will
spawn exactly one thread; in the second case the analyser will spawn infinitely
many threads (see the last part of the paragraph “Lams”).

As a consequence, our judgments have two sets of thread names: T for the
names created once, R for the names that will be spawned infinitely many times,
each time with a fresh name, and they become

BeT, IVF, S, Z, T, R, iy P: /¢

We use the predicate “i is executed once” whenever the method containing the
instruction ¢ is not (mutual) recursive or the instruction 4 is not inside an itera-
tion (this predicate can be easily computed in our type system). The type rule
for a method C.m that creates two threads — t’ executed once, ¢’ spawned several
times — is

P[i] = invokevirtual C.m () i+ 1€ dom(P)
Si=a-S" typeof(I3,a) =C
p = mk_tree(I;,a) t',t" = names(i) Bcr(Cm)(p,t,[Z:])(#,t") =, {t'}, {t"}, 0", &)
i1 =1+ env(p) + env(p”) Sit1 =root(p’)- S Fiy1=F, Ziy1=2;
Tt Rirt — T, 0 {t'}, Riu{t"} ifi is executed once
LML TA TR U {t', "} otherwise

Ber, I F, S, Z,T,R,i ¢ P:Cm(p,t,[Z;]) — ¢

In this case, the last premise defines the values of T;,1 and R;y; according to
the instruction ¢ is executed once or not.

Lams. In our technique, the dependencies between symbolic names are expressed
by means of lams [6], noted ¢, whose syntax is

=0 | (a,0)¢ | Cm(p)—p | (wa)l | £&¢ | £+/4

The term 0 is the empty type; (a, b); specifies a dependency between the object
a and the object b that has been created by the thread ¢. The term C.m(p) — p’
defines the invocation of C.m with arguments p and with returned type p’. The
argument sequence p has always at least three elements in our case: the first
element is the carrier, while the last two elements are the thread that performed
the invocation and the last object name whose lock has been acquired by it. The
operation (v a)f creates a new name a whose scope is the type £; the operations
£ & and £+ ¢ define the conjunction and disjunction of the dependencies in ¢
and ¢, respectively. The operators + and & are associative and commutative.
A lam program is a pair (.,?, K), where .Z is a finite set of function definitions

Cm(p) — p/ = Lo

with fcn being the body of C.m, and ¢ is the main lam. We notice that the type
p' is considered an argument of the lam function as well. When p’ = void, the
function definitions are shortened into C.m(p) = ¢, and the invocations into
cm(p).

As an example, the lams of the Network’s code in Figure [l is reported in
Figure 2] (lams have been simplified for easing the readability). We discuss the
methods takeForks and buildNetwork. The method takeForks has arguments
this, x, y, t and u, where t and u are as discussed above. This method acquires
the locks of x and y in order; therefore its lam is quite simple: there is a depen-
dency between u and x and a dependency between x and y, namely (u,x); &
(x,y)¢. The lam of buildNetwork is more complex. The first line corresponds
to the then-branch (lines 0-10), namely the invocation to takeForks. The other
lines correspond to the else-branch. Here we have the creation of the object z
and the invocation of the corresponding constructor (second line of the body of

Main(this,t,u) = (v x,y)(Object.init(x,t,u)->x + Object.init(y,t,u)->y
+ buildNetwork(this,_,x,y,t,u))

takeForks(this,x,y,t,u) = (u,x)¢ & (x,¥)¢

buildNetwork(this,_,x,y,t,u) = (v z,tl,ul)(
takeForks(this,x,y,t,u)
+ Object.init(z,t,u) -> z
+ Network$1.init(t1[this$0:T,val$x:T,val$z:T],this,x,z,t,z) ->
t1[this$0:this,val$x:x,val$z:z]
+ Network$1.run(t1[this$0:this,val$x:x,val$z:z],t1,ul) &
buildNetwork(this,_,z,y,t,u)

Object.init (this,t,u) =-> this = 0

Network$1.init(this[this$0:X,val$x:Y,val$z:2],x1,x2,x3,t,u) ->
this[this$0:x1,val$x:x2,val$z:x3] = 0

Network$1.run(this[this$0:x1,val$x:x2,val$z:x3],t,u) = takeForks(x1l,x2,x3,t,u)

Fig. 2. Network’s lams (the _is a place holder for an integer)

the lam function and line 17 of the bytecode), the invocation to the construc-
tor of Network, that is called Network$1, which returns a new thread that we
call t1. The last line of the lam of buildNetwork contains the invocation of
t1l.start and the recursive invocation to buildNetwork. These invocations are
in conjunction because they are in parallel.

We conclude with a remark about the dependencies specified the the judg-
ment

BeT,IVF, S, Z,T,R,it P:{.

In our system, these dependencies are actually those defined by ¢ and those
defined by Z;, T;, and R;. In particular, let Z; = a-d/, T; = {t'}, and R; = {t"}.
Then the dependencies of the instruction i are (mk_tree(I5,t') = (¢'[f: p'],C)
and mk_tree(I;,t") = (t"[£ : p"],C)):

& (a',a)y & C.run((t'[f : p'],C),t, locky) & RUN("[f : p”],C)

where C is a subclass of Thread, locky is a (fake) name associated to ¢’ and
representing a default object locked by ¢, and RUN is a lam function defined by

RUN(a[f : p],C) = C.run((a[f : p],C),a, lock,) & (va’')RUN(a'[£ : p],C)

The difference between T' and R is exactly the fact that RUN is recursive. This
means that every name in R corresponds to the parallel composition of in-
finitely many threads with different root names. The analyser in Section [@] verifies
whether this composition is consistent or not (with respect to deadlocks).

5 More about typing and JaDA

The type system described in this paper has been prototyped. It also covers fea-
tures such as constructors, arrays, exceptions, static members, interfaces, inheri-
tance, recursive data types. The overall system is called JaDA. Here we overview
two relevant extensions — inheritance and recursive data types —, the details of
these two extensions and the other ones can be found in Garcia’s PhD thesis [5].

Inheritance. JVML, does not admit to derive classes from other classes. As a
consequence, when a method is invoked, it is possible to uniquely locate the
method definition (the output of typeof (I;,a) in Section [is always a single
element. Therefore we cannot type

Cw; { if (2) w=newD ; elsew=new E ; } w.foo(;

which is a correct Java program, assuming that D and E are subclasses of C. In
this case, if D and E have different implementations of foo, we do not know how
the invocation w.foo () will be dispatched at run-time. Our solution consists of
relaxing the relation between consecutive environments I; and [;41 in such a
way that the type of I;41(w) may be the one of I';(w) plus a set of subclasses
therein. Henceforth, the lam corresponding to the invokevirtual of w.foo() is
Zc’etypeof(n-,w) C'.foo(w,t,a), namely C.foo(w,t,a) +D.foo(w,t,a) + E.foo(w,t, a).

Recursive types. Recursive types are managed by using finite representations.
Object names of recursive types are special names indexed by $. A flattened
recursive record type is built by unfolding the recursive types (exactly) up to
those nodes containing a name of a class already present in the tree. Nodes
inside the tree are labelled by new names, nodes in the leaves are labelled ei-
ther (for non recursive types) with T or int or with names already present
in the environment or (for recursive types) with names subscribed by a $ that
correspond to the nodes of the classes that are already present in the tree. By
construction, these structures are finite. For instance, if C is a class whose type
is [val : Thread, next : C] (a list of threads) then, in correspondence of a new C
instruction, we produce an environment rg — [val : (a[|, Thread), next : rg] .
Lists like the foregoing one are managed in ad-hoc ways. In particular we can
deliver a precise analysis as long as the nodes of the list are all equal, otherwise
we return false positives. We observe that this technique is more precise than one
would think. For instance, assume to create a list of threads, where the field val
of each node contains a new thread. This list is created by an iteration and the
instruction creating the thread is always the same — say i. Hence, by definition
of the function names(i), the nodes of the list always contain the same name
and can be represented as described above. Finally, in order to have a sound
analysis, we also modify our definition of circularity in lams. In particular, if the
types of g and of rg are the same, a term like (73, c)¢&(c,75) is a circularity
because 7§ may be replaced by every name of the same type, including rg.

6 The analysis of circularities in lams

Once behavioural types have been computed for the whole JVML; program, we
can analyse the type of the main method. The analysis uses an extension of the
algorithm defined in [6/9] that we discuss below.

The semantics of lams is very simple: it amounts to unfolding function invo-
cations. The critical points are that (i) every invocation may create new fresh
names and (4i) the function definitions may be recursive. These two points imply
that a lam model may have infinite states, which makes any analysis nontrivial.
It is worth to recall that the states of lams are conjunctions (&) of dependen-
cies and function invocation (because types with disjunctions + are modelled

by sets of states with conjunctive dependencies). The results of [6/9] allow us to
reduce the analysis to finite models, i.e. finite disjunctions of finite conjunctions
of dependencies. In turn, this finiteness makes possible to decide the presence of
a so-called circularities, namely terms such as (a,b); & (b, a)y.

In [6/9], the dependencies are not indexed by thread names: here we use more
informative dependencies in order to cope with Java reentrant locks. In partic-
ular (a,b): & (b,a); is not a circularity and, when ¢ # ¢', we carefully separate it
from (a, b); & (b, a). Because of this extension, we have modified the definitions
of transitive closure and of projecting-out fresh names, which are basic notions
in the algorithm of [6l9]. Let ¢ # t' and let v be a special object name. This
symbol v* is a special thread name indicating that the dependency is due to
the contributions of two or more threads. Let also £ be a conjunction & of
dependencies:

— the transitive closure of £, noted £*, is the least conjunction that contains £
and such that if (a,b); & (b, ¢)y is a subterm of £* then either (i) (a,c), is
a subterm of £1, if t # t/, or (i) (a,c); is a subterm of £ if t = ¢/;

— £ has a circularity if there is a such that (a,a), is a subterm of ¢*.

For example £ = (a,b): & (b, a): & (b, ¢)¢ has no circularity because £ = (a,b); &
(bya)t & (a,a)s & (b,b)t & (b, ¢) & (a,), does not contain any pair (a,a), .

As regards projecting-out fresh names, when a lam ¢ contains a function
invocation, our algorithm replaces the invocation with the corresponding in-
stance of its body where new names are replaced by fresh names. For example,
if ¢ = (a,b)¢ & f(a,b) and f(z,y) = (v z,t')((z,y)r & (x, 2)y) then we obtain the
term ¢ = (a,b); & (a,b)y & (a,z')y — where 2’ is a fresh object name —, which
is equal to its transitive closure. We notice that ¢/ may be simplified: (i) the
dependency (a, z")y will never be involved in a circular dependency because 2z’
is fresh in ¢’ and is unknown elsewhere; therefore it may be dropped; (i) the
dependency (a,b)y is important, however the name t' is not: we just need to
separate it from the other (old thread) names. Therefore we replace (a,b)y with
(a,b)e, where o is a special thread name. The lam (a, b): & (a,b). is the output
of the projecting-out operation.

The algorithm we use is the following. Let (.,2” , f) be a lam program and let
% be the set of function definitions similar to . but with bodies 0.

step 1: ¢+ = 0;
step 2: compute %5 1: for every body ¢; of a lam function f in £ compute
the new body éf(”l) as follows:
a. replace bound names with fresh names;
b. replace function invocation in £y with their meaning in .%;;
c. compute the transitive closure of the resulting lam and let ¢ f+ be the
new lam;
d. project out the fresh names in £;* and let ff(”l) be the resulting lam.
step 3: if £, # %, then i =i+ 1 and goto step 2, else exit.

The above algorithm terminates and let n be the least integer such that %, =
Zn+1. It turns out that ¢ will display a circularity (by evaluating its function
invocations according to £, which may be recursive) if and only if ¢ displays a

circularity when the function invocations are evaluated with their definitions in
%, (which are not recursive).

The proof of soundness of our type system is represented by a subject reduc-
tion theorem expressing that, if a JVM configuration c¢n has lam ¢ and cn reduces
to a configuration cn’ then (i) c¢n’ is also well-typed and (i) if ¢ is the type of
cn’ then, if a circularity occurs in ¢ then a circularity is present in £, as well.

7 Assessment of JaDA

Since JaDA covers many features of Java, it has been possible to deliver an initial
assessment of it with respect to existing deadlock analysis tools. In particular,
we have considered tools using different techniques Chord for static analysis [10],
Sherlock for dynamic analysis [3], and GoodLock for hybrid analysis [2]. We
have also considered a commercial tool, ThreadSafe[d [1]. Out of these tools, we
were able to install and effectively test only two of them: Chord and ThreadSafe;
the results corresponding to GoodLock and Sherlock come from [3]. We also had
problems in testing Chord with some of the examples in the benchmarks, perhaps
due to some misconfigurations, that we were not able to solve because Chord has
been discontinued.

Table 1. Comparison with different deadlock detection tools. The inner cells show the
number of deadlocks detected by each tool. The output labelled “(*)” are related to
modified versions of the original programs: see the text.

Static Hybrid Dynamic Commercial

benchmarks LOC, #Threads|[deadlock|[JaDA[tm] [Chord[tm]|GoodLock[tm][Sherlock[tm][ThreadSafe[tm]

1274, 5 yes 1 T[135s][1 [210s] |7 [4s] 1 [39s] 4 [435s
RayTracer(*) 1292, 5 no 0 [155s]|0 [223s] |8 [2s] 2 [30s] 0 [502s
MolDyn (*) 1351, 5 no 0 [110s]|0 [191s]|6 [5s] 1 [49s] 0 [423s
MonteCarlo (*) 3619, 4 no 0 [231s]|0 [342s] |23 [5s] 2 [102s] 0 [821s
BuildNetworkN 40, N+1 yes 3 [8s] [0 [50s 0 [50s
PhilosophersN 60, N+1 yes 3 [12s] |0 [5ls 0 [51s
Thread ArraysN 23, N+1 yes 1 [6s 1 [40s 1 [40s
ThreadArraysJoinsN |37, N+1 yes 1 [6s 1 [41s 0 [41s
ScalaSimpleDeadlock|[39, 2 yes 1 [3s
ScalaPhilosophersN |62, N+41 yes 3 [4s

We have analysed a number of programs that exhibit a variety of sharing
patterns. The source of all benchmarks in Table [[lis available either at [3/I0] or
in the JaDA-deadlocks repositorym. Since the current release of JaDA does not
completely cover JVM, in order to gain preliminary experience, we modified the
Java libraries and the multithreaded server programs of RayTracer, MolDyn and
MonteCarlo (labelled with “(*)” in the Table[I) and implemented them in our
system. This required little programming overhead; in particular, we removed
volatile variables, avoided the use of Runnable interfaces for creating threads,
and reduced the invocations of native methods involved in I/O operations. For
every program, we give the lines of code (LOC), the number #Threads of threads
explicitly created (in the second and third block this number depends on the ar-
gument N). We also state whether the program under examination has a deadlock

6 http://www.contemplateltd.com/threadsafe
" https://github.com/abelunibo/Java-Deadlocks

or not and the time in seconds (tm) each tool took to perform the analysis. The
times for GoodLock and Sherlock were taken from the literature [3].

Here are our remarks. The first block of programs belongs to a well known
group used as benchmarks for several Java analysis tools; the second block cor-
responds to examples designed to test JaDA against complex deadlock scenarios.
First of all JaDA is the unique tool that never returns false positives or false neg-
atives. Chord and ThreadSafe are unsound because they return false negative
(see the second block). The execution time of the tools are similar (JaDA appears
more efficient), except for GoodLock and Sherlock, which appear however much
less precise (they return a lot of false positives). As regards the second block, we
observe that JaDA returns few deadlocks, which do not depend from N. This is
because our analysis is symbolic and does not consider numeric values (most of
the deadlock are considered “to be similar”).

The third group reports the analysis of two examples of Scala programs [11]
(the Scala compiler 2.11 produces Java bytecode). To the best of our knowledge,
there is no static deadlock analysis tool for Scala (for this reason the entries
corresponding to the other tools are empty).

We have also analyzed the whole Java library. The overall analysis took 5
hours and 40 min. We have considered as entry points the public static param-
eterless methods and we have run the analyzer with the following limitations:
native codes are not analyzed (their behavioural type is 0) and concurrency de-
pendencies caused by wait/notify patterns are not verified. The analysis has
not reported any deadlock.

8 Related work and Conclusions

We do not have space to discuss in detail the related work; therefore we focus
on the tools used in the assessment of Section [and their theories. ThreadSafe
uses a data-flow analysis that constructs an execution flow graph and searches for
cycles within this graph. Some heuristics are used to remove likely false positives.
No alias analysis to resolve object identity across method calls is attempted. This
analysis is performed in Chord [3JI0], which can detect re-entrance on restricted
cases, such as when lock expressions concern local variables (it is not possible
to use fields). GoodLock [2] and its refinement Sherlock [3] use a theory that is
based on monitors. Therefore the technique is a runtime technique that tags each
segment of the program reached by the execution flow and specifies the exact
order of lock acquisitions. Thereafter, these segments are analyzed for detecting
potential deadlocks that might occur because of different scheduler choices (than
the current one). This kind of technique is partial because one might overlook
sensible patterns of methods’ arguments (c¢f. BuildNetwork, for instance). We
are not aware of other static analysers for the deadlock detection of Java. A
powerful static tool is SACO [4], which has been developed for ABS, an object-
oriented language with a concurrent model different from Java. A comparison
between SACO and a tool using a technique similar to the one in this paper can
be found in [§].

In this paper we have defined a new technique for detecting deadlocks in Java
programs by analysing the Java intermediate language JVML. The technique has
been specified by focusing on a subset of JVML featuring thread creations and

synchronizations, called JVML;. We have also developed a prototype, called JaDA,
which also covers complex features of Java, such as static members, arrays, re-
cursive data types, exception handling, inheritance and dynamic dispatch. These
extensions have made possible to deliver an initial assessment of JaDA with re-
spect to existing deadlock analysis tools for Java.

Our future work includes the analysis of features of Java that have not yet
been studied. One relevant feature is thread coordination, which is expressed by
the methods wait, notify and notifyAll. Another extension addresses native
methods, namely methods that are not implemented within the language and
that are used when it is necessary to interact with the Operating System or
for meta-programming purposes. Our current solution is to manually insert in
the BCT the behavioural types of native methods. We are investigating testing
mechanisms that may help in writing the types of such methods.

References
1. Robert Atkey and Donald Sannella. Threadsafe: ~ Static anal-
ysis for Java concurrency. ECEASST, 72, 2015. URL:

http://journal.ub.tu-berlin.de/eceasst/article/view/1025.

2. Saddek Bensalem and Klaus Havelund. Dynamic deadlock analysis of multi-
threaded programs. In in Hardware and Software Verification and Testing, volume
3875 of Lecture Notes in Computer Science, pages 208-223. Springer, 2005.

3. Mahdi Eslamimehr and Jens Palsberg. Sherlock: scalable deadlock detection for
concurrent programs. In Proceedings of the 22nd International Symposium on
Foundations of Software Engineering (FSE-22), pages 353-365. ACM, 2014.

4. Antonio Flores-Montoya, Elvira Albert, and Samir Genaim. May-happen-in-
parallel based deadlock analysis for concurrent objects. In Proc. FORTE/F-
MOODS 2013, volume 7892 of Lecture Notes in Computer Science, pages 273—288.
Springer, 2013.

5. Abel Garcia. Static analysis of concurrent programs based on behavioral type sys-
tems. PhD thesis, School in Computer Science and Engineering, 2017. Available
at JaDA.cs.unibo.it.

6. Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock analysis of un-
bounded process networks. In Proceedings of 25th International Conference on
Concurrency Theory CONCUR 201/, volume 8704 of Lecture Notes in Computer
Science, pages 63—77. Springer, 2014.

7. Elena Giachino and Cosimo Laneve. Deadlock detection in linear recursive pro-
grams. In 1jth Int. School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems (SFM 2014), volume 8483 of Lecture Notes in
Computer Science, pages 26—64. Springer, 2014.

8. Elena Giachino, Cosimo Laneve, and Michael Lienhardt. A framework for deadlock
detection in core ABS. Software and Systems Modeling, 15(4):1013-1048, 2016.

9. Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process
networks. Inf. Comput., 252:48-70, 2017.

10. Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static dead-
lock detection. In 81st International Conference on Software Engineering (ICSE
2009), pages 386-396. ACM, 2009.

11. Martin Odersky and al. An Overview of the Scala Programming Language. Tech-
nical Report 1C/2004/64, EPFL, Lausanne, Switzerland, 2004.

http://journal.ub.tu-berlin.de/eceasst/article/view/1025

	Deadlock detection of Java Bytecode

