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Abstract. In the coming years, ensuring the electricity supply will be one of the most 
important world challenges. Renewable energies, in particular wind energy, are an 
alternative to non-sustainable resources thanks to their almost unlimited supply. 
However, the chaotic nature and the variability of the wind represent a significant 
barrier to a large-scale development of this energy. Consequently, providing accurate 
wind power forecasts is a crucial challenge. This paper presents AMAWind, a multi-
agent system dedicated to wind power forecasting based on a cooperative approach. 
Each agent corresponds to a turbine at a given hour, it starts from an initial production 
forecast and acts in a coopera-tive way with its neighbors to find an equilibrium on 
conflicting values. An assessment of this approach was carried out on data coming from 
a real wind farm.

Keywords: Multi-Agent System · Cooperation · Wind energy Forecasting

1 Introduction

Renewable energies are increasing steadily in several countries, in particular 
wind energy, mainly driven by the cost decrease of wind turbines. In 2017, wind 
energy represented 5% of the French national electricity production with 12 GW 
installed. The United Nations Conference on Climate Change COP21 has set 
a goal of 30% renewable energy in the overall energy supply in the country by 
2020, and more precisely, the wind installed capacity should reach 26 GW by 
2023 [24].

In a number of countries with significant wind power generation, electricity 
markets are organized as electricity pools, gathering production and consump-
tion offers in order to dynamically find the quantities and prices for electricity 
generation and consumption maximizing social welfare. Wind power produc-
ers propose energy offers based on forecasts. The market clearing is designed to
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match production offers and consumption bids through an auction process. Since
power producers are financially responsible for any deviation from these con-
tracts, improving wind power forecasting accuracy enables to reduce the penal-
ties they incur [20].

Wind power forecasts have been used industrially for over 20 years and this
field is approaching technological maturity following a concerted research effort
reviewed comprehensively in [8,16]. However, forecast errors are still high and
there are several pointers to improve them. This paper focuses on one of the cur-
rent challenges introduced by the research and industry stakeholders of the Inter-
national Energy Agency (IEA) Wind task 36: Model the interactions between
the wind turbines of a farm [9].

Indeed, the dependencies between the productions of close turbines represent
additional information rarely integrated in the wind power forecasting models.
In this paper we propose to solve this problem with a cooperative approach
which has shown significant results in other applications [2,22].

This paper presents therefore an approach based on Multi-Agent Systems and
cooperation to provide wind power forecasts compliant with the farm constraints.
It is organized as follows: Sect. 2 introduces the wind power forecasting problem.
The Adaptive Multi-Agent Systems approach is described in Sect. 3 and the
resulting designed system called AMAWind (Adaptive Multi-Agent System for
Wind Power Forecasting) is presented in Sect. 4. Finally, the evaluation of the
system and the results analysis are detailed in Sect. 5, before concluding.

2 Wind Power Forecasting

2.1 Theoretical Power Curve

According to theoretical studies on wind turbines [15], the power P delivered by
a wind turbine follows the equation:

P =
1

2
ρSCpv

3 (1)

where v is the wind speed, ρ is the air density, S is the rotor surface (the area
swept by the blades) and Cp is the power coefficient (the fraction of wind energy
that the wind turbine is able to extract).

This function only forms part of the full power curve (the graph representing
the wind speed-production relationship). A typical power curve for an opera-
tional wind turbine is sketched in Fig. 1 and is made up of 4 parts: (1) below
cut-in wind speed (typically between 3 and 4 m/s) where the turbine does not
operate, (2) between cut-in and rated wind speed where the power follows (1),
(3) above rated wind speed where the power is limited to the turbine’s rated
power, (4) above cut-out wind speed (usually around 25 m/s) where the turbine
is shut down to prevent damage [4].



2.2 Current Forecast Methods

In practice, the relationship between wind speed and power is difficult to model
because the conversion process is affected by many external factors such as poor
quality wind speed measurements, mechanical wear and blade erosion, among
others. Moreover, the wind speed at the exact blades location depends on the
topography and the interaction between turbines. In Fig. 1, the observed pro-
duction of a wind turbine is also plotted as a function of the 100 m high wind
speed forecast, the wide disparity of the points demonstrates the difficulty of
modeling the relationship.

Fig. 1. A theoretical power curve compared with the observed production as a function
of the 100 m high wind speed forecast

As a result, power curve models constitute a preliminary approximation of the
production but they introduce uncertainty. They are mostly used when a wind
speed or production history is not available, e.g. for recently installed turbines.

According to [13], wind power forecasting methods can be basically divided
into two distinct categories: (1) Physical approaches based on Computational
Fluid Dynamics (CFD) models. (2) Statistical approaches which use previous
historical data to train a model representing the relation between wind power
and explanatory variables including Numerical Weather Prediction (NWP) and
on-line measured data. Hence, either we improve the forecasted wind by mod-
eling the site or we learn from the model errors. Although the first approach
is necessary in the absence of measured data on the wind turbine, it is a very
specific problem depending on the topography and roughness of the site. Statis-
tical approaches based on machine learning methods such as boosted regression
trees [14], neural networks [21] or deep learning [23] are at the forefront of the
technology, with gradient boosting methods winning both the 2012 and 2014
Global Energy Forecasting Competitions [11,12]. Despite the performance of
these approaches, they do not take into account the information available relat-
ing to the relationships between wind turbines.



2.3 Towards a Turbine-Level Forecasting

Due to the low resolution of weather models or a lack of data, wind power fore-
casts are usually provided at farm scale. In other cases, a production is forecasted
for every wind turbine independently and the farm production is obtained by
a sum of these forecasts. However, for a single farm, wind turbines productions
are very correlated with each other, especially between close turbines. Moreover,
since a wind turbine generates electricity from the energy in the wind, the wind
leaving the turbine has a lower energy content than the wind arriving in front
of the turbine. A wind turbine thus interferes with its neighbors and can cause
a production decrease on the turbines located behind it downwind. This phe-
nomenon is called the wake effect [17]. This additional information has to be
taken into account in the forecast process with the aim of improving the predic-
tion accuracy. Therefore, the problem is to forecast the production at wind farm
level by considering local constraints between turbines.

A bottom-up approach has been proposed in [3] to solve this problem. A first
forecast is done independently at turbine-level with machine learning algorithms
(LASSO, GBM and XGBoost). The farm production is then computed by a
weighted sum of the forecasts where weights are determined by linear regression.
An improvement can be observed by firstly dividing data by wind direction and
then determining weights. However this approach solves the problem in a global
way, considering all the turbines together. It does not take into account the local
constraints between close turbines.

In this work, a wind farm is considered as a whole system composed of inter-
related turbines. Like a mechanical spring system, entities are connected with
each other by some constraints. The system evolves towards an equilibrium state
globally minimizing the constraints in the system. In this case, an entity tries to
comply with the consistency between its forecast and the past observations of
its history. Each entity starts from an initial forecast and can modify it in order
to make it coherent with the forecasts provided by its neighborhood.

A wind farm is composed of multiple interacting wind turbines within an
environment. From this point of view, a Multi-Agent System (MAS) is a suitable
system to represent the wind farm structure. Since the relationships between tur-
bines evolve continuously according to weather situations, an adaptive method
is required to solve these dynamic constraints. Therefore, the MAS has to be
endowed with adaptation capabilities and we focused this study on Adaptive
Multi-Agent Systems [5].

3 Adaptive Multi-Agent Systems

An Adaptive Multi-Agent System (AMAS) is a MAS able to adapt to its envi-
ronment in an autonomous way [5]. In an AMAS, the global function is not
hard-coded but emerges from the interactions between the agents composing it.
Each agent performs a local partial function and is able to autonomously change
its behavior and its relations with the other ones. This ability of self-organization



makes the global function evolve and the system becomes able to adapt to dis-
ruptions or changes in its environment, it is therefore open, robust and designed
in a bottom-up way.

Of course, agents need a criterion to question their behavior and relations,
this criterion is what is called “cooperation”. Every agent has a cooperative
social attitude which makes it always help the most critical agent in its (limited)
neighborhood unless itself becomes the most critical one (an agent is benevolent
but not altruistic). The criticality of an agent represents its degree of dissatis-
faction with respect to its local goal [7]. This domain-dependent criticality value
has to be normalized in order to be compared between agents. The actions of
the agents aim at minimizing as much as possible the criticality of all the agents
in the system without needing any global knowledge.

Despite the fact that this approach is relatively new, recent examples show
that these systems can be used to solve complex industrial problems, such as
estimation of the state of an electrical network [19], automatic tuning of a com-
bustion engine [2] or optimization of the cooling of photovoltaic panels [10].
Furthermore, the dynamics and uncertainty of data provided as inputs in this
wind forecasting problem also confirm the relevance of such a system.

4 AMAWind for Wind Power Forecasting

A weather model provides forecasts on specific coordinates (every 2.5 km hor-
izontally and vertically in our case) called grid points (see Fig. 2) and a wind
turbine is directly surrounded by four grid points. Forecasts have to be made
considering weather forecast data coming from weather models and production
data obtained from the wind turbines of the farm. In this paper, we consider a
grid point as the weather forecast database of a coordinate and a wind turbine
as the production database of itself. The uncertainty of the weather forecasts,
the complexity of the wind speed-production relationship and the interdepen-
dence of the wind turbines productions are such that the use of an Adaptive
Multi-Agent System is a good candidate to solve the wind turbine production
forecast problem.

Fig. 2. The layout of the studied wind farm. The weather forecasts are provided at
grid points position.



The proposed forecasting system, called AMAWind, is therefore based on
an Adaptive Multi-Agent System and was designed in a bottom-up manner by
first determining the entities and agents composing this system according to the
ADELFE methodology [1].

Fig. 3. Agentification

An active entity, named Grid Point Hour
(GPH) entity, is associated with one grid point
and one hour and provides weather forecasts for
its grid point for the given hour.

An agent, named Wind Turbine Hour
(WTH) agent, is responsible of the forecast of a
wind turbine production at a given hour (e.g. an
agent charged with forecasting for the wind tur-
bine #4 on January 25, 2018 at 08:00 a.m.). The
environment of a WTH agent is based on phys-
ical closeness: at a given hour, a WTH agent is
related to the four closest GPH entities and, at
most, the two closest WTH agents (see Fig. 3).

WTH agents and GPH entities have respec-
tively access to their associated wind turbine and
grid point history.

4.1 Agents Behavior

The behavior of an agent follows the classical Perception-Decision-Action

life cycle. The agent starts with a forecast initialized at the average production
of the wind turbine. In each cycle, it can decide to modify it.

Firstly, the agent perceives the current forecast and criticality of its neigh-
bors. It also knows its own forecast and criticality.

Secondly, the agent decides how to change its forecast. These changes are
made from the information previously perceived. The agent has three possibili-
ties: to increase, to decrease or not to change its forecast. The increment is fixed
at 10 kW. It simulates these different cases and performs the action minimizing
the maximal criticality of its neighbors and itself. Even if this action has as a
consequence a higher criticality for itself, an agent acts in a cooperative way as
described in Sect. 3.

Finally, the agent performs the decided action which possibly changes its
forecast, and consequently updates its criticality.

4.2 Criticality

As seen in Sect. 3, the cooperation between agents is mainly based on the concept
of criticality. Generally, a criticality C depending on x follows the function:

C(x) =






1 − e−k(x−i1), if x < i1
0, if x ∈ [i1, i2]
1 − ek(x−i2), if x > i2

(2)



where k is a slope factor and [i1, i2] is the interval corresponding to the lowest
criticality.

The local aim of a Wind Turbine Hour agent is to determine the best forecast
and to ensure that this one matches with the ones of its neighbors. Therefore, a
high criticality means the forecast does not comply with the constraints imposed
by the history. These constraints have to appear in the criticality through the
interval [i1, i2] chosen in (2). The general process to build the interval from a
current weather forecast provided by a Grid Point Hour entity is:

– The weather forecast is compared with the full weather forecasts history of the
grid point by means of a Fixed-radius near neighbors search [6]. It consists
in looking for the closest entries below a defined threshold according to a
similarity measure. In brief, we are looking for the dates where similar weather
situations have occurred (e.g. a cold and windy day).

– The powers delivered by the wind turbine corresponding to these dates are
extracted from its production history. A set of potential wind power forecasts
is thus obtained.

– Finally, the interval is built by selecting the first and third quartiles of this
set.

The choice to use an interval simplifies the criticality construction. In the long
term, criticality should really represent the distribution of the set of potential
wind power forecasts.

In this paper, the weather situation corresponds to the forecast of the wind
speed and the wind direction at a given date. Other indicators indirectly involved
in (1) such as temperature, pressure or relative humidity are not used in this
work because they have a lesser impact on the production.

The quality of the forecast made by a WTH agent depends on the consistency
of its forecast with both its own past productions and the neighboring agents
forecast. The criticality is then expressed by considering these two factors and
combines two kinds of sub-criticalities (see Fig. 4a and b):

Local Criticality. The forecast made by an agent has to be consistent with
the productions observed with a similar weather situation in its history (e.g.
the wind turbine rarely produces energy when the weather model forecasts a
very light wind). For every pair of WTH agent and GPH entity, an interval is
made from the above process. The corresponding criticality is then built with
the function (2).

Neighboring Criticality. The forecast has also to be consistent with the ing
agents forecasts (e.g. if a wind turbine always produces more amount of power
than its neighbor, this constraint has to be taken into account). Indeed, a turbine
slows down the wind behind it due to the wake effect and thus interferes with its
neighbors. Therefore, a difference appearing in past observations between two
wind turbines will be included in the resolution through this criticality. It is
built in the same way that the local criticality except that the interval comes



from a set of production differences between two wind turbines instead of a set
of productions.

The final criticality of a WTH agent corresponds to the maximum between
each local criticality and neighboring criticality. This choice enables not to give
an advantage to one criticality over the other, they are considered equivalent.

Fig. 4. Criticality decomposition: local (a) and neighboring (b)

5 Evaluation

The system was implemented and tested on real data coming from a French
wind farm. Given that the main goal of this work is to improve forecast quality,
we mainly evaluate the system on forecast error.

5.1 Protocol and Data Set

To evaluate forecasts performance two metrics were used: the mean absolute
error (MAE) and the root mean squared error (RMSE), two standard measures
to evaluate estimator performance. RMSE is an interesting measure in this use
case because larger errors have a disproportionately large effect.

These metrics are given by the equations:

MAE =
1

N

N∑

i=1

|ŷi − yi| RMSE =

√√√√ 1

N

N∑

i=1

(ŷi − yi)2 (3)

where ŷi is the forecast and yi the observation. The NMAE and the NRMSE
correspond to the errors normalized by the rated power to have more convenient
results.

The wind farm includes 15 lined up turbines. Weather forecasts are provided
by the Météo-France AROME high-resolution forecast model from 12:00 a.m. to



06:00 p.m. for the next day (with time horizon from 21 h to 39 h). The experiment
covers a large period thanks to a 26-months history of wind power and weather
forecasts from 05/2015 to 07/2017.

The model is validated by a k-fold cross-validation. The original sample is
partitioned into k equal sized subsamples. Of the k subsamples, a single subsam-
ple is retained as the validation data for testing the model, and the remaining k -
1 subsamples are used as training data. Although this method does not represent
the real conditions (learning from more recent data than the validated ones), it
enables to give an insight on how the model will generalize to an independent
data set. In this case, we chose a 7-fold which corresponds to a validation set
of approximately 100 days. At each validation, approximately 28500 agents are
created (100 days × 19 h × 15 turbines).

The forecasts provided by the agents evolve in the system as long as the
overall criticality does not converge towards a value. In practical, we confirm the
convergence if the criticality remains constant for 10 successive cycles. When this
occurs, the wind power forecasts are extracted and compared to real productions.

5.2 Results and Error Comparison

Table 1 presents the NMAE and the NRMSE computed for the 7 subsamples of
the 7-fold validation. The average error is then provided at the end.

Table 1. Results summary

Sample Forecast method

Average production GBM AMAWind

NMAE NRMSE NMAE NRMSE NMAE NRMSE

1 20.66% 23.96% 10.23% 15.62% 10.17% 15.53%

2 22.84% 27.09% 10.78% 17.21% 10.48% 16.78%

3 30.75% 37.94% 14.16% 19.98% 14.13% 19.87%

4 23.73% 29.32% 13.19% 19.39% 13.46% 19.90%

5 18.67% 20.67% 7.27% 11.43% 7.00% 10.73%

6 29.05% 35.36% 14.34% 21.75% 14.23% 21.56%

7 20.09% 23.34% 9.30% 14.18% 9.09% 13.66%

Mean 23.68% 28.24% 11.32% 17.08% 11.22% 16.86%

The Average production method consists in using the average production of
the turbine as a forecast. This naive method, never used in practice, serves as a
reference value. In this experiment, it provides an average NMAE of 23.68%,
twice the errors obtained by the two methods based on weather forecasts.

The GBM method (Gradient Boosting Model) is a forecaster commonly cho-
sen in wind power forecasting because it provides correct results without requir-
ing complex tuning. The model was trained and tested on the same data sets
and was implemented thanks to the machine learning library Scikit-learn [18].



The cooperative method used in AMAWind provides average results slightly
better than the GBM in terms of NMAE and NRMSE (respectively from 11.32%

to 11.22% and from 17.08% to 16.86%). Except for the fourth subsample, the
forecasts made by the cooperative approach are more accurate.

Given that the wind power forecast error is highly correlated with the weather
forecast error, we observe similar results between methods for the same subsam-
ple. The wide disparities between the subsamples (e.g. 7.27% and 14.34%) are
due to the non-linearity of the wind speed and production relationship. Indeed,
as can be seen in Fig. 1, a wind speed deviation before or after the cut-in wind
speed will not lead to the same error. Therefore, the sixth subsample depicted a
more windy period than the fifth.

5.3 Criticality Analysis

Does a criticality decrease lead to an error decrease? This relation, essential
to improve the results with such a system, is not directly implemented. The
criticality and behavior definitions have to result to this emerging phenomenon.

The evolution of the average NMAE and criticality for the seven subsamples
is presented in Fig. 5a and b which show that the required relation is confirmed
by the experiment.

Fig. 5. NMAE (a) and criticality (b) evolution on the seven subsamples

While every criticality decreases in the same way, the errors decrease with
different slopes (e.g. the fifth and the seventh). However, for a given subsam-
ple, the convergence happens simultaneously for the NMAE and the criticality
because an agent would not change its forecast if its criticality reaches a mini-
mum. Moreover, a high final criticality leads to a high final error, e.g. the third
and the sixth end at a criticality and error of approximately 20% and 14%. The
criticality can therefore be seen as an uncertainty indicator.

In conclusion, the criticality chosen in this work is consistent for the problem
because it enables to improve the forecasts.



6 Conclusion

This paper has proposed a wind power forecasting approach based on a coop-
erative resolution by a Multi-Agent System. We considered the wind farm as a
whole system with local constraints between each turbine. We used cooperation
as a means to solve the possible conflicts and to obtain a forecast compliant with
these constraints.

Resolutions were made locally and showed a decrease of the global fore-
cast error. Despite the basic behavior of the agents, AMAWind provides results
slightly better than a commonly used method. These initial outcomes are encour-
aging but some improvements can be made to the criticality definition and the
algorithm used in the initialization.

The future works should take into account temporal dependencies by con-
necting agents representing the same turbine one hour before and after. Whereas
this work focuses on day-ahead forecasting, another potential approach concerns
short-term forecasting for the intraday market where temporal dependencies are
important.
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