
ar
X

iv
:1

80
3.

08
03

4v
1 

 [
m

at
h.

G
R

] 
 2

1 
M

ar
 2

01
8

Word Problem Languages for Free Inverse

Monoids

Tara Brough ⋆

Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

t.brough@fct.unl.pt

Abstract. This paper considers the word problem for free inverse monoids
of finite rank from a language theory perspective. It is shown that no free
inverse monoid has context-free word problem; that the word problem of
the free inverse monoid of rank 1 is both 2-context-free (an intersection of
two context-free languages) and ET0L; that the co-word problem of the
free inverse monoid of rank 1 is context-free; and that the word problem
of a free inverse monoid of rank greater than 1 is not poly-context-free.

Keywords: Word problems; Co-word problems; Inverse monoids; ET0L
languages; Stack automata; Poly-context-free languages

1 Introduction

The word problem of a finitely generated semigroup is, informally, the problem
of deciding whether two words over a given finite generating set represent the
same element of the semigroup. Although it is undecidable [23], even for finitely
presented groups [21,4], there has been much study (especially for groups) of
word problems that are in some sense ‘easily’ decidable, for example by having
low space or time complexity, or being in certain low-complexity language classes.

For groups, the obvious formalisation of the word problem is as the set of
all words over the set of generators and their inverses representing the identity
element, since if u and v are words representing the same element then uv−1

represents the identity. This has been generalised to semigroups in two ways:
the first, which we shall call the word problem of a semigroup S with respect
to finite generating set A is the set WP(S,A) = {u#vrev | u =S v, u, v ∈ A+}
(where # is a symbol not in A); the second, the two-tape word problem of S with
respect to A, is the relation ι(S,A) = {(u, v) ∈ A+ × A+ | u =S v}. Monoid
versions of these are obtained by replacing A+ with A∗. The word problem has
been studied in [7,12,13] and the two-tape word problem in [22,3].

⋆ The author was supported by the Fundação para a Ciência e a Tecnologia (Por-
tuguese Foundation for Science and Technology) through an FCT post-doctoral
fellowship (SFRH/BPD/121469/2016) and the projects UID/Multi/04621/2013
(CEMAT-CIÊNCIAS) and UID/MAT/00297/2013 (Centro de Matemática e
Aplicações).

http://arxiv.org/abs/1803.08034v1


A semigroup S is inverse if for every x ∈ S there is a unique y ∈ S such that
xyx = x and yxy = y. The classes of inverse semigroups and inverse monoids
each form varieties of algebras and hence contain free objects. The free inverse
monoid on a set X is denoted FIM(X); if |X | = k then we also use the notation
FIMk, and k is called the rank of FIMk. All results in this paper are stated for
free inverse monoids, but are equally true for free inverse semigroups, since in a
free inverse monoid the only representative of the identity is the empty word ǫ.

Word problems for free inverse monoids have already been studied from a
time and space complexity perspective: the word problem of a free inverse monoid
of finite rank is recognisable in linear time and in logarithmic space [18]. The aim
of this paper is to understand these word problems from a language-theoretic
perspective. All free inverse monoid word problems are context-sensitive, since
this is equivalent to recognisability in linear space. Our main goal is thus to
determine in which of the many subclasses of the context-sensitive languages the
free inverse monoid word problem might lie. Before summarising the results, we
introduce several of the language classes considered. All classes mentioned here
are closed under inverse generalised sequential machine mappings, and hence the
property of having word problem in any of these classes is closed under change
of finite generating set.

The non-closure of the class CF of context-free languages under complemen-
tation and intersection [15] leads naturally to the definition of the classes of
coCF and poly-CF languages, being respectively the classes of complements and
finite intersections of context-free languages. A language is called k-CF if it is
an intersection of k context-free languages. Groups with context-free co-word
problem were studied in [14], and groups with poly-context-free word problem
in [2]. For groups, having coCF word problem is equivalent to the co-word prob-

lem (the complement of the word problem, or abstractly the problem of deciding
whether two words represent different elements) being context-free. For monoids,
we generalise this terminology on the abstract rather than technical level: the
complement of the word problem is not an algebraically interesting language, so
to define the co-word problem of a monoid we replace u =M v by u 6=M v (for
the two-tape word problem this is the same as taking the complement).

Stack automata, introduced in [9], are a generalisation of pushdown automata
that allow the contents of the stack to be examined in ‘read-only’ mode. They are
a special case of the nested stack automata introduced slightly later by Aho [1]
to recognise indexed languages. The checking stack languages are recognised by
the more restricted checking stack automata [11], in which the stack contents
can only be altered prior to commencing reading of the input.

ET0L languages are another subclass of indexed languages, standardly de-
fined by ET0L-systems, which are essentially finite collections of ‘tables’ of
context-free-grammar-type productions. These operate similarly to context-free
grammars except that at each step in a derivation, productions all from the
same ‘table’ must be applied to every nonterminal in the current string (each
table is required to have productions from every nonterminal, though these of
course may be trivial). The more restricted EDT0L languages have the further



requirement that in each table of productions there be only one production from
each nonterminal. An automaton model for ET0L languages was given in [25]:
it consists of a checking stack with attached push-down stack, operating in such
a way that the pointers of the two stacks move together. See [24] for further
information on ET0L languages and their many relatives.

In the rank 1 case our goal is achieved fairly comprehensively, with both
types of word problem for FIM1 being shown to be 2-CF (but not context-free),
co-CF and a checking stack language (and hence ET0L). As far as the author
is aware, this is the first known example of a semigroup with ET0L but not
context-free word problem. This result is particularly interesting because of the
long-standing open problem of whether the indexed languages – of which the
ET0L languages form a subclass – give any additional power over context-free
languages for recognising word problems of groups [19,10]. In higher ranks we
show that WP(FIMk) for k ≥ 2 is not poly-CF . We conjecture that the same
is true for ι(FIMk), and that neither version of the word problem is coCF or
indexed except in rank 1.

2 Background

2.1 Free inverse monoids

Recall that a monoid M is inverse if for every x ∈ M there is a unique y ∈ M
such that xyx = x and yxy = y. The element y is called the inverse of x and is
usually denoted x−1. In this paper we will also often use the notation x for the
inverse of x. Given a set X , we use the notation X−1 for a set {x | x ∈ X} of
formal inverses for X , and X± for X ∪X−1. For an element x ∈ X±, if x ∈ X
then x−1 = x, while if x = y for y ∈ X then x−1 = y. We can extend this to
define the inverse of a word w = w1 . . . wn with wi ∈ X± by winv = w−1

n . . . w−1
1 .

For any set X , the free inverse monoid FIM(X) on X exists and is given by
the monoid presentation

FIM(X) = 〈X± | u = uuinvu, uuinv = uinvu (u ∈ (X±)∗)〉.

This presentation is not particularly useful for working with the word problem
of free inverse monoids. A much more powerful tool is given by Munn trees

[20]. These are certain labelled directed finite trees that stand in one-to-one
correspondence with the elements of FIM(X), and such that the product of two
elements can easily be computed using their corresponding trees. To obtain the
Munn tree for an element m ∈ FIM(X), we use the Cayley graph G(F (X), X)
of the free group F (X). This can be viewed as a labelled directed tree with |X |
edges labelled by the elements of X entering and leaving at each vertex. (The
Cayley graph also technically has its vertices labelled by the elements of G, but
these are not needed for our purposes.) Given any word w ∈ (X±)∗ representing
m, we choose any vertex of G(F (X), X) as the start vertex and label it α. From
vertex α, we then trace out the path defined by reading w from left to right,
where for x ∈ X , we follow the edge labelled x leading from the current vertex



upon reading x, and follow the edge labelled x leading to the current vertex upon
reading x. We mark the final vertex of the path thus traced as ω, and remove
all edges not traversed during reading of w. The result is the Munn tree of w,
and the free inverse monoid relations ensure that two words produce the same
Munn tree if and only if they represent the same element of FIM(X).

To multiply two Munn trees, simply attach the start vertex of the second
tree to the end vertex of the first tree, and identify any edges with the same
label and direction issuing from or entering the same vertex. From this it can be
seen that the idempotents (elements x such that x2 = x) in FIM(X) are those
elements whose Munn trees have α = ω, and that these elements commute.

2.2 Word problems of inverse monoids

Two notions of word problem for inverse monoids will occur throughout this
paper. For an inverse monoid M with finite generating set X , the word problem

of M with respect to X is the set

WP(M,X) = {u#vinv | u, v ∈ (X±)∗, u =M v},

while the two-tape word problem of M with respect to X is

ι(M,X) = {(u, v) ∈ (X±)∗ × (X±)∗ | u =M v}.

If the generating set X is irrelevant, we may use the notation WP(M) or ι(M).
Each of these notions generalises the definition of the group word problem

W (G,X) as the set of all words over X± representing the identity. If M is
a group, then W (G,X) and WP(G,X) are obtained from each other by very
simple operations (deletion or insertion of a single #), and so membership in any
‘reasonable’ language class will not depend on whether we consider the group or
inverse monoid word problem. For the two-tape word problem the generalisation
is of a more algebraic nature: ι(M,X) and W (G,X) are each the lift to (X±)∗

of the natural homomorphism from the free inverse monoid (respectively free
group) on X to M (respectively G). The kernel of a group homomorphism is a
set, while the kernel of a semigroup homomorphism is a relation.

The word problem for semigroups in general has been studied in [12], where it
is defined as the set of words u#vrev with u and v representing the same element.
For inverse monoids, this is equivalent to the word problem considered here, since
u#vinv is obtained from u#vrev by simply replacing every symbol after the #
by its inverse. This operation can be viewed as an inverse generalised sequential
machine mapping, and thus all classes of languages we consider are closed under
it (and hence all results in this paper hold for the definition in [12] as well).
Note that it is still essential to include the ‘dividing symbol’ #: as an example,
if F = FIM(X) and x ∈ X , then x#x ∈ WP(F,X), but xx# /∈ WP(F,X).

3 The rank 1 case

Since the free group of rank 1 is isomorphic to (Z,+), Munn trees in the rank 1
case can be viewed as intervals of integers containing zero (the starting point α),



with a marked point (ω). This allows elements of FIM1 to be represented by a
3-tuple of integers (−l, n,m) with l, n ∈ N0 and −l ≤ m ≤ n, where [−l, n] is the
interval spanned by the Munn tree and m is the marked point. Multiplication
in this representation of FIM1 is given by

(−l, n,m)(−l′, n′,m′) = (−l ∧ (m− l′), n ∨ (m+ n′),m+m′).

Equipped with this model of FIM1, we can determine that free inverse monoids
never have context-free word problem.

Theorem 1. For any k ∈ N, neither WP(FIMk) nor ι(FIMk) is context-free.

Proof. Suppose that WP(FIMk, X) is context-free (X any finite generating set
of FIMk). Then for any x ∈ X , the language L := WP(FIMk, X)∩x∗x∗x∗#x∗ is
also context-free. For n ∈ N, let wn = xnxnxn#xn, which is in L for all n ∈ N.
For n greater than the pumping length p of L, we can express wn in the form
uvwyz such that |vy| ≥ 1, |vwy| ≤ p, and the strings v, y can simultaneously be
‘pumped’. Thus there must exist i, j ∈ N0, not both zero, such that all strings
of one of the following three forms must be in L for m ≥ −1:

xn+imxn+jmxn#xn, xnxn+imxn+jm#xn, xnxnxn+im#xn+jm.

However, in all cases, some words of the given form are not in L:

Word form Not in L for
xn+imxn+jmxn#xn (i 6= 0 ∧m ≥ 1) ∨ (i = 0 ∧ j 6= 0 ∧m ≥ 1)
xnxn+imxn+jm#xn as above
xnxnxn+im#xn+jm (j 6= 0 ∧m = −1) ∨ (j = 0 ∧ i 6= 0 ∧m ≥ 1)

Hence L, and thereforeWP(FIMk, X), is not context-free. The proof for ι(FIMk, X)
is similar, using the pumping lemma on (xnxnxn, xn) for sufficiently large n. ⊓⊔

For the remainder of this section, let FIM1 be generated by X = {x} and
let Y = X± = {x, x}. For w ∈ Y ∗, denote the image of w in FIM1 by ŵ. We
define functions λ, ν and µ from Y ∗ to Z by setting (−λ(w), ν(w), µ(w)) = ŵ. It
will often be helpful to regard words in Y ∗ as paths in the integers starting at 0,
with x representing a step in the positive direction and x a step in the negative
direction. We will refer to and visualise these directions as right (positive) and
left (negative). Thus for w ∈ Y ∗ the path traced out by w has rightmost point
ν(w), leftmost point −λ(w) and endpoint µ(w).

The idempotents in FIM1 are the elements (−l, n, 0) for l, n ∈ N0. We define
the set of positive idempotents E+ = {(0, n, 0) | n ∈ N0} and similarly the set
of negative idempotents E− = {(−l, 0, 0) | l ∈ N0} in FIM1. (Note that in these
definitions, the identity (0, 0, 0) is counted as both a positive and a negative
idempotent.) Grammars for the sets of positive and negative idempotents form
an important building block in Theorem 2 (as well as in the ET0L grammar
mentioned following Corollary 1).



Lemma 1. Let Y = {x, x} and LE+ = {w ∈ Y ∗ | ŵ ∈ E+}. Then LE+ is

generated by the context-free grammar Γ+ = ({S}, Y, P+, S) with P+ consist-

ing of productions P1 : S → SS, P2 : S → xSx and P3 : S → ε. Simi-

larly, LE− := {w ∈ Y ∗ | ŵ ∈ E−} is generated by the context-free grammar

Γ− = ({S}, Y, P−, S) with P− the same as P+ except that P2 is replaced by

P ′
2 : S → xSx.

Proof. We can view LE+ as the language of all paths starting and ending at 0
and never crossing to the left of 0. Concatenating two such paths gives another
such path, so we have (LE+)∗ = LE+ . Let L be the language of all paths in
Y ∗ that start and end at 0 without visiting 0 in between. Then LE+ = L∗ and
w ∈ Y ∗ is in L if and only if either w = ε or there exists v ∈ LE+ such that
w = xvx. That is, LE+ = (xLE+x)∗.

Let M be the language generated by Γ+. We show by induction on the
length of words that LE+ = M . Note that for any w in LE+ or M we have
|w|x = |w|x, so both languages consist of words of even length. To begin with,
LE+ ∩ Y 0 = M ∩ Y 0 = {ε}. Now suppose that LE+ ∩ Y 2i = M ∩ Y 2i for all
i < n. For w ∈ Y 2n, we have w ∈ LE+ if and only if either w = w1w2 or w = xvx
for some w1, w2, v ∈ LE+ . By induction, this occurs iff w1, w2 ∈ M respectively
v ∈ M , iff S → SS ⇒ w1w2 respectively S → xSx ⇒ xvx in Γ+, iff w ∈ M .
Hence LE+ = M . The language LE− is the reverse of LE+ , and the grammars
Γ+ and Γ− are the reverse of one another, hence LE− is generated by Γ−. ⊓⊔

A word u#vinv with u, v ∈ Y ∗ is in WP(FIM1, X) if and only if it traces
out a path starting and ending at 0 which reaches its rightmost and leftmost
points each at least once before and at least once after the #. If the minimum
or maximum is achieved at the end of u, this counts as being achieved both
before and after #. (The path must end at 0 because if û = v̂ then û(v̂)−1 is
an idempotent.) We now show that although the word problem of FIM1 is not
context-free, it can be expressed as an intersection of two context-free languages.

Theorem 2. WP(FIM1) and ι(FIM1) are both 2-CF.

Proof. Let X = {x}, Y = {x, x} and L = WP(FIM1, X). We can express L as
the intersection of the following two languages:

Lν = {u#vinv | u, v ∈ Y ∗, ν(u) = ν(v) ∧ µ(u) = µ(v)}

and
Lλ = {u#vinv | u, v ∈ Y ∗, λ(u) = λ(v) ∧ µ(u) = µ(v)}.

We will show that Lν and Lλ are each context-free and hence L is 2-CF . Since
Lλ is simply the reverse of Lν , it suffices to prove that Lν is context-free.

Let Γν = (V,Σ, P, S) be the context-free grammar with nonterminals V =
{S, T, Z, Z ′}, terminals Σ = {x, x,#} and productions P as follows:

S → ZSZ | xSx | T

T → ZTZ | xTx | #

Z → ZZ | xZx | ε.



Any derivation in Γν can be expressed as

S ⇒ αSβ → αTβ ⇒ u1u2#v2v1, (1)

where α ⇒ u1, β ⇒ v1 and T ⇒ u2#v2.
For any α′ ∈ {Z, x}∗ and β′ ∈ {Z, x}∗ with |α′|x = |β′|x, there is a partial

derivation in Γν , not involving the production S → T , from S to α′Sβ′. Con-
versely, any partial derivation from S not involving S → T results in a string
αSβ in which α and β can be derived from some such α′ and β′ respectively.

Let α ∈ {Z, x}∗ and w ∈ Y ∗ with α ⇒∗ w. By Lemma 1, the subwords of
w produced from instances of Z in α evaluate to negative idempotents, and so
have no effect on ν(w) or µ(w), whereas each x in α increases both ν(w) and
µ(w) by 1. Hence ν(w) = µ(w) = |α|x. Thus a pair of words u1 and v1 can
appear in the derivation (1) if and only if ν(u1) = µ(u1) = µ(vinv1 ) = µ(vinv1 ).
Similarly, it can be shown that T ⇒ u2#v2 if and only if ν(u2) = ν(vinv2 ) = 0
and µ(u2) = µ(vinv2 ) ≤ 0.

Hence S ⇒ u#v if and only if we can write u = u1u2 and v = v2v1 such that
there exist l1, l2, l

′
1, l

′
2,m, n ∈ N0 with

u1 =FIM1
(−l1, n, n) u2 =FIM1

(−l2,−m, 0)

vinv1 =FIM1
(−l′1, n, n) vinv2 =FIM1

(−l′2,−m, 0).

If u#v ∈ Lν, then we can express u and v in this way by setting u1 to be the
shortest prefix of u such that ν(u1) = ν(u) and vinv1 the shortest prefix of vinv

such that ν(vinv1 ) = ν(vinv). Conversely, supposing we can express u and v in
this way, we have

u =FIM1
(−l1, n, n)(−l2, n,−m) = (−i, n, n−m)

vinv =FIM1
(−l′1, n, n)(−l′2, 0,−m) = (−j, n, n−m)

for some i, j ∈ N0. That is, u#v ∈ Lν .
Hence Lν is generated by Γν and is context-free, and therefore Lrev

ν = Lλ is
also context-free. Thus WP(FIM1, X) = Lν ∩ Lλ is 2-CF.

For variety, we give an automaton proof for ι(FIM1, X). Define sublanguages
Lι
ν and Lι

λ of Y ∗×Y ∗ analogously to Lν and Lλ. Let x1 = (x, ǫ), x2 = (ǫ, x) and
define x1, x2 similarly. Reading xi or xi means that we read an x or x from the i-
th tape and nothing from the other tape. Define a pushdown automaton Aν with
states q0, q1 by the following transitions for i = 1, 2 (Z is the bottom-of-stack
symbol):

(q0, Z, (x, x)) 7→ (q0, Z) (q1, Z, (x, x)) 7→ (q1, Z)

(q0, Z, xi) 7→ (q0, YiZ) (q1, Z, xi) 7→ (q1, YiZ)

(q0, Yi, xi) 7→ (q0, YiYi) (q1, Yi, xi) 7→ (q1, YiYi)

(q0, Yi, xi) 7→ (q0, ǫ) (q1, Yi, xi) 7→ (q1, ǫ).

(q0, Z, ǫ) 7→ (q1, Z)



The language Aν accepts by empty stack consists of all pairs (u, v) where
u, v ∈ (E−x)n(E−x)kE− for some n, k ∈ N0, which is precisely the language Lι

ν .
Switching the roles of x and x in Aν gives rise to a pushdown automaton Aλ

accepting Lι
λ. Hence ι(FIM1, X) is also 2-CF . ⊓⊔

Theorem 3. Both versions of the co-word problem of FIM1 are context-free.

Proof. Let K = coWP(FIM1, X) = {u#vinv | u, v ∈ Y ∗, u 6=FIM1
v}. A word

w = u#v with u, v ∈ Y ∗ is in K if and only if the path traced out by w starting
at 0 either does not end at 0, or its minimum or maximum value is not achieved
both before and after # (recall that this includes not being achieved at the end
of u). Thus a context-free grammar for K with start symbol S is given by the
following productions:

S → M | U | D U → ZxUxZ | xExZ# | #ZxExZ

M → ExA | ExB D → Z ′xDxZ ′ | xExZ ′# | #Z ′xExZ ′

A → xA | EAE | ǫ Z → ZZ | xZx | ǫ

B → xB | EBE | ǫ Z′ → Z ′Z ′ | xZ ′x | ǫ.

E → ZE | Z ′E | ǫ

M generates all u#vinv with µ(u) 6= µ(v); U generates all u#vinv with uvinv

idempotent but ν(u) 6= ν(v), and D does the same as U but for λ instead of ν.
The two-tape co-word problem of FIM1 with respect to X is the language

M = {(u, v) ∈ Y ∗×Y ∗ | u 6=FIM1
v}. A pushdown automaton recognisingM can

be expressed as the union of automata Bµ, Bν , Bλ. The automaton Bµ checks
that |u|x − |u|x 6= |v|x − |v|x for input (u, v), and thus accepts all pairs with
µ(u) 6= µ(v). The automaton Bν has states q0, q1, q2, f , with f being the unique
final state, input symbols xi, xi (as in the proof of Theorem 2) and transitions:

(q0, x1, Z) → (q0, XZ) (q0, ǫ, ∗) → (q1, ∗) (q2, x2, Z) → (f, Z)

(q0, x1, X) → (q0, XX) (q1, ǫ, Y ) → (q1, ǫ) (q2, x2, X) → (q2, ǫ)

(q0, x1, Y ) → (q0, ǫ) (q1, x2, X) → (q2, ǫ) (q2, x2, Y ) → (q2, ǫ)

(q0, x1, ∗) → (q0, Y ∗) (q1, x2, X) → (q2, Y X) (q2, x2, ∗) → (q2, Y ∗)

(q2, ǫ,X) → (f,X),

where Z is the bottom-of-stack marker and ∗ denotes any stack symbol (X,Y, Z).
In state q0,X

ν(u)Y ν(u)−µ(u) is placed on the stack. State q1 removes all Y ’s. State
q2 then checks ν(v) against ν(u), moving to the final state f if we either find
that ν(v) > ν(u) or nondeterministically if ν(v′) < ν(u) for the prefix v′ of v
read so far, in which case Bν accepts if there is no further input. Thus Bν accepts
the language of all (u, v) with ν(u) 6= ν(v). The automaton Bλ is obtained by
swapping the roles of xi and xi in Bν , and accepts (u, v) with λ(u) 6= λ(v). ⊓⊔

Given the model of elements of FIM1 as marked intervals in Z, stack automata
provide possibly the most natural class of automata to consider as acceptors of
its word problem. It turns out that it suffices to use a checking stack automaton.



Theorem 4. WP(FIM1) and ι(FIM1) are each recognised by a checking stack

automaton.

Proof. The idea of the checking stack automaton for WP(FIM1) is to use the
stack contents as a model for an interval of integers [−l, n] (chosen nondetermin-
istically before beginning to read the input), and check for input u#vinv whether
û = v̂ = (−l, n,m) for some m ∈ [−l, n]. Following the set-up phase, the stack
contents will always be of the form LlORn for some l, n ∈ N0, with the leftmost
symbol L or O being marked with a superscript −, and the rightmost symbol
O or R being marked with a superscript +. Such a string represents a guess
that the input string u#vinv will have λ(u) = λ(v) = l and ν(u) = ν(v) = n.
For α ∈ L∗OR∗, we denote the string ‘α with marked endpoints’ by [α]. For
example, [LLORR] = L−LORR+ and [O] = O±. Before beginning to consume
the input, the stack marker is moved to O(+,−,±).

During the checking phase, the automaton A moves up and down the stack,
tracing out the path given by u#vinv, accepting if and only if three conditions
are satisfied: (i) both the left and right endpoints of [α] are reached at least once
before and after the #; (ii) the automaton never attempts to move beyond the
endpoints of [α]; and (iii) the automaton ends with the stack marker pointing at
O(+,−,±). If during the set-up phase the string [LlORn] was placed on the stack,
then the set of words accepted by A following that particular set-up will be the
language {u#vinv | u, v ∈ Y ∗, λ(u) = λ(v) = l, ν(u) = ν(v) = n, µ(u) = ν(v)}.

More formally, the checking transitions of A are described as follows, using
states {qi, q

+
i , q

−

i , q
∗
i , f | i = 1, 2}, with f the unique final state. Following the

setup phase (which can be achieved non-deterministically using two states), A
is in state q1, with stack contents [α] for some string α ∈ L∗OR∗, and the stack
marker pointing at the symbol corresponding to O in [α]. The symbol $ is an
end-of-input marker, standardly included in the definition of stack automata. Let
∆− = {O−, R−} and ∆+ = {O+, L+}. The left-hand side of a transition repre-
sents the current automaton configuration (state,input,stack symbol). The right-
hand side has first component the state to be moved to, and second component
the direction in which to move the stack marker (with − denoting no change).
The full set of stack symbols is Γ = {L(+,−), O(+,−,±), R(+,−)}. For i = 1, 2:
(q1,#, O±) 7→ (q∗2 ,−),
(qi, x, C) 7→ (qi, ↑), C ∈ {L,O,R}
(qi, x, C) 7→ (qi, ↓), C ∈ {L,O,R}
(qi, x, C) 7→ (q−i , ↑), C ∈ ∆− (q∗i , x, C) 7→ (q∗i , ↑), C /∈ {R+, O+, O±}
(qi, x, C) 7→ (q+i , ↓), C ∈ ∆+ (q∗i , x, C) 7→ (q∗i , ↓), C /∈ {L−, O−, O±}
(q+i , x, C) 7→ (q∗i , ↑), C ∈ ∆− (q∗1 ,#, C) 7→ (q2,−), C ∈ Γ
(q−i , x, C) 7→ (q∗i , ↓), C ∈ ∆+ (q∗2 , $, C) 7→ (f,−), C ∈ {O,O−, O+, O±}.

Note that these transitions involve no push or pop operations, so A is a
checking stack automaton. Now assume that A has reached the reading phase,
with stack contents [LlORn] for some l, n ∈ N0. Let L(l,n) denote the language
of all words accepted by A from this configuration. The case (l, n) = (0, 0) is
degenerate, since [O] = O± and the only path from q0 to f in this case is on input
#$, which is exactly as desired since the empty word is the only representative



of the identity (0, 0, 0) in Y ∗. Henceforth we will assume at least one of l or n is
non-zero.

With few exceptions, the automaton moves up the stack on input x and down
on x. The exceptions are when this would otherwise result in moving beyond the
top or bottom of the stack. In these cases there are no transitions defined and
so the automaton fails. Thus for w ∈ Y ∗ the stack marker traces out the path
given by w, provided this path remains within the interval [−l, n].

When the automaton is in state qi and has reached the top of the stack
(indicated by a symbol in ∆+), on the next input it either fails (on x) or moves
to state q+i (on x). Similarly, after reaching the bottom of the stack (symbols in
∆−), the automaton either fails (on x) or moves to q−i (on x). Following either
of these events, the automaton will move to state q∗i after reaching the opposite
end of the stack, provided it does not fail. Thus being in state q∗0 indicates that
the automaton has read some u′ ∈ Y ∗ with λ(u′) = l and ν(u′) = n.

The only transition on the symbol # is from state q∗0 to q1 (regardless of
stack symbol), and the only transition on $ is from q∗1 to the final state f and
requires the automaton to be pointing at O(+,−) (both of these transitions leave
the stack unchanged). Hence L(l,n) contains exactly those words in Y ∗#Y ∗$

which trace out a path in [−l, n] starting and ending at O(+,−) which visit the
top and bottom of the stack each at least once before and after the #; that is,
L(l,n) consists of all u#vinv$ such that u#vinv is in WP(FIM1, X) and λ(u) = l,
ν(u) = n, as desired. Since the language accepted by A is

⋃
l,n∈N0

L(l,n), we
conclude that A accepts WP(FIM1, X).

To recognise ι(FIM1, X), we make a few small modifications to A: in the
setup phase, we additionally mark some symbol of the stack contents [α] to
denote a guess as to the location of µ(u) = µ(v) (where the input is (u$, v$)). In
states qi, q

+
i , q

−

i , q
∗
i , we read from the i-th tape (i = 1, 2). On reaching the end

symbol $ on each tape, we only proceed if the stack marker is pointing at the
marked symbol. We introduce an intermediate state between q∗1 and q2 which
returns the stack marker to the symbol corresponding to O in α. In all other
respects, the automaton behaves the same as A. Thus the stack contents of the
modified automaton represent an element (−l, n,m) of FIM1, and with these
stack contents the automaton accepts all (u, v) such that u and v both evaluate
to (−l, n,m). Evaluating over all possible stack contents yields ι(FIM1, X). ⊓⊔

Note that the classes of 2-CF and checking stack languages are incomparable.
The language {ww | w ∈ A∗} for |A| ≥ 2 is not poly-CF (an easy application of
[2, Theorem 3.9]), but is accepted by a checking stack automaton that starts by
putting a word w on the stack and then checks whether the input is ww. The
language {(abn)n | n ∈ N} is not even indexed [15, Theorem 5.3], but is 3-CF.

Since E(D)T0L languages have been shown to describe various languages
arising in group theory [5,6] (but not word problems), it is worth noting the
following.

Corollary 1. WP(FIM1) and ι(FIM1) are both ET0L.



Proof. This follows from Theorem 4 and the fact that the class of checking stack
languages is contained in the ET0L languages [25]. ⊓⊔

The author has constructed nondeterministic ET0L grammars for WP(FIM1, X)
and ι(FIM1, X) with 9 tables and 11 nonterminals. The nondeterminism arises
from the fact that for any word w ∈ Y ∗, we may insert idempotents arbitrarily
at any point in w without changing the element represented, provided that these
idempotents are not ‘large’ enough to change the value of ν(w) or λ(w).

Conjecture 1 Neither WP(FIM1) nor ι(FIM1) is EDT0L.

4 Rank greater than 1

The word problem for inverse monoids in higher ranks is more complex from a
language theory perspective.

Lemma 2. For any k ≥ 3, WP(FIMk) is not (k − 2)-CF.

Proof. For any k ≥ 2, let Xk = {x1, . . . , xk, x1, . . . , xk} and let

Lk = {xm1

1 xm1

1 . . . xmk

k xmk

k #xn1

1 xn1

1 . . . xnk

k xnk

k | mi, ni ∈ N0}.

Let Wk = WP(FIMk, Xk). Then Wk consists of all those words in Lk with
mi = ni for all i (since idempotents in FIMk commute). By [2, Theorem 3.12],Wk

is not (k− 1)-context-free 1. Since Wk is the intersection of WP(FIMk, Xk) with
the context-free language Lk, this implies that WP(FIMk, Xk) is not context-
free. ⊓⊔

Since for k ≥ 2 FIMk contains submonoids isomorphic to FIMn for all n, the
following theorem is immediate from Lemma 2.

Theorem 5. For any k ≥ 2, WP(FIMk) is not poly-CF .

Note that the argument in Lemma 2 does not work for ι(FIMk), since the set
{(xm1

1 xm1

1 . . . xmk

k xmk

k , xm1

1 xm1

1 . . . xmk

k xmk

k ) | mi ∈ N0} is context-free. Writing
the idempotent on the second tape in reverse (that is, starting with xmk

k xmk)
does not help, as the resulting language is still 2-CF. It appears likely that the
intersection of ι(FIMk) with the following CF language would not be (k−1)-CF :

{(xl1
1 x

l1
1 . . . xlk

k xlk
k xm1

1 xm1

1 . . . xmk

k xmk

k , xn1

1 xn1

1 . . . xnk

k xnk

k ) | li,mi, ni ∈ N0},

but proving this would require delicate arguments about intersections of strati-
fied semilinear sets beyond the scope of this paper.

The author conjectures that neither version of the word problem for FIMk,
k ≥ 2 is indexed. While a nested stack automaton can easily be used to store a
Munn tree, there appears to be no way to check while reading a word w ∈ X∗

that the path traced out by w visits every leaf of the stored Munn tree.

1 The language L
(2,k) in the referenced result is not precisely Wk, but the associated

set of integer tuples differs from that associated to Wk only by a constant (arising
from the symbol #), which does not affect stratification properties and therefore
does not affect the property of not being (k − 1)-CF .



References

1. A. Aho, ‘Nested stack automata’, J. ACM 16(3), 383–406 (1969).
2. T. Brough, ‘Groups with poly-context-free word problem’, Groups Complex. Cryp-

tol. 6(1), 9–29 (2014).
3. T. Brough, ‘Inverse semigroups with rational word problem are finite’, Unpublished

note: arxiv:1311.3955 (2013).
4. W.W. Boone, ‘The word problem’, Ann. of Math., 2(70), 207–265 (1959).
5. L. Ciobanu, V. Diekert and M. Elder, ‘Solution sets for equations over free groups

are EDT0L languages’, In: Automata, Languages, and Programming. ICALP 2015.
Lecture Notes in Comput. Sci. 9135. Springer, Berlin, Heidelberg (2015).

6. L. Ciobanu, M. Elder and M. Ferov, ‘Applications of L systems to group theory’,
Internat. J. Algebra Comput. online (2018).

7. A. Duncan and R.H. Gilman, ‘Word hyperbolic semigroups’, Math. Proc. Cam-

bridge Philos. Soc. 136, 513–524 (2004).
8. N.D. Gilbert and R. Noonan Heale, ‘The idempotent problem for an inverse

monoid’, Internat. J. Algebra Comput. 21, 1170–1194 (2011).
9. S. Ginsburg, S.A. Greibach and M.A. Harrison, ‘One-way stack automata’, J. ACM

14(2), 389–418 (1967).
10. R.H. Gilman and M. Shapiro, ‘On groups whose word problem is solved by a nested

stack automaton’, arxiv:math/9812028.
11. S. Greibach, ‘Checking automata and one-way stack languages’, J. Comptr. System

Sci. 3, 196–217 (1969).
12. M. Hoffman, D.F. Holt, M.D. Owens and R.M. Thomas, ‘Semigroups with a

context-free word problem’, DLT ’12 Proceedings of the 16th international con-

ference on Developments in Language Theory, 97–108 (2012).
13. D.F. Holt, M.D. Owens and R.M. Thomas, ‘Groups and semigroups with a one-

counter word problem’, J. Aust. Math. Soc. 85, 197–209 (2005).
14. D.F. Holt, C.E. Röver, S.E. Rees and R.M. Thomas, ‘Groups with a context-free

co-word problem’, J. Lond. Math. Soc. 71, 643–657 (2005).
15. J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley (1979).
16. M. Kambites, ‘Anisimov’s Theorem for inverse semigroups’, Internat. J. Algebra

Comput. 25, 41–49 (2015).
17. M.V. Lawson, ‘Inverse Semigroups: The Theory of Partial Symmetries’, World

Scientific (1998).
18. M. Lohrey and N. Ondrusch, ‘Inverse monoids: Decidability and complexity of

algebraic questions, Inform. and Comput., 205(8), 1212–1234 (2007).
19. L.P. Lisovik and V.N. Red’ko, ‘Regular events in semigroups’, Problemy Kibernetiki

37, 155–184 (1980).
20. W.D. Munn, ‘Free inverse semigroups’, Proc. Lond. Math. Soc. s3-29(3), 385–404

(1974).
21. P.S. Novikov, ‘On the algorithmic unsolvability of the word problem in group

theory’, Amer. Math. Soc. Transl. Ser. 2 9, 1–122 (1958).
22. M.J. Pfeiffer, ‘Adventures in applying iteration lemmas’, PhD thesis, University of

St Andrews (2013).
23. E. Post, ‘Recursive unsolvability of a problem of Thue’, J. Symb. Log. 12(1), 1–11

(1947).
24. G. Rozenberg and A. Salomaa, The Book of L, Springer (1986).
25. J. van Leeuwen, ‘Variations of a new machine model’, Conf Record 17th Annual

IEEE Symp on Foundations of Computer Science, 228–235 (1976).

arxiv:1311.3955
arxiv:math/9812028

	Word Problem Languages for Free Inverse Monoids

