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Abstract. The Harary-Hill conjecture states that for every n > 0 the
complete graph on n vertices Kn, the minimum number of crossings over
all its possible drawings equals

H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊n− 2

2

⌋⌊n− 3

2

⌋
.

So far, the lower bound of the conjecture could only be verified for ar-
bitrary drawings of Kn with n ≤ 12. In recent years, progress has been
made in verifying the conjecture for certain classes of drawings, for ex-
ample 2-page-book, x-monotone, x-bounded, shellable and bishellable
drawings. Up to now, the class of bishellable drawings was the broadest
class for which the Harary-Hill conjecture has been verified, as it contains
all beforehand mentioned classes. In this work, we introduce the class of
seq-shellable drawings and verify the Harary-Hill conjecture for this new
class. We show that bishellability implies seq-shellability and exhibit a
non-bishellable but seq-shellable drawing of K11, therefore the class of
seq-shellable drawings strictly contains the class of bishellable drawings.

1 Introduction

Let G = (V,E) be an undirected graph and Kn the complete graph on n > 0
vertices. The crossing number cr(G) of G is the smallest number of edge crossings
over all possible drawings of G. In a drawing D every vertex v ∈ V is represented
by a point and every edge uv ∈ E with u, v ∈ V is represented by a simple curve
connecting the corresponding points of u and v. The Harary-Hill conjecture
states the following.

Conjecture 1 (Harary-Hill [8]). Let Kn be the complete graph with n vertices,
then

cr(Kn) = H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊n− 2

2

⌋⌊n− 3

2

⌋
.

There are construction methods for drawings of Kn that lead to exactly H(n)
crossings, for example the class of cylindrical drawings first described by Harary
and Hill [9]. For a cylindrical drawing, we put bn2 c vertices on the top rim and
the remaining dn2 e vertices on the bottom rim of a cylinder. Edges between
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vertices on the same rim (lid or bottom) are connected with straight lines on
the lid or bottom. Two vertices on opposite rims are connected with an edge
along the geodesic between the two vertices. The drawing of K6 in figure 1 (a)
is homeomorphic to a planarized cylindrical drawing of K6.

However, there is no proof for the lower bound of the conjecture for arbitrary
drawings of Kn with n > 12. The cases for n ≤ 10 are shown by Guy [8]
and for n = 11 by Pan and Richter [12]. Guy [8] argues that cr(K2n+1) ≥
H(2n+1) implies cr(K2(n+1)) ≥ H(2(n+1)), hence cr(K12) ≥ H(12). McQuillan
et al. showed that cr(K13) ≥ 219 [11]. Ábrego et al. [4] improved the result to
cr(K13) ∈ {223, 225}.

Beside these results for arbitrary drawings, there has been success in proving
the Harary-Hill conjecture for different classes of drawings. So far, the conjec-
ture has been verified for 2-page-book [1], x-monotone [2,6,15], x-bounded [2],
shellable [2] and bishellable drawings [5]. The class of bishellable drawings com-
prises all beforehand mentioned classes, and until now it was the largest class of
drawings for which the Harary-Hill conjecture has been verified. Ábrego et al.
[5] showed that the Harary-Hill conjecture holds for bishellable drawings using
cumulated k-edges.

Our contribution. In this work, we introduce the new class of seq-shellable
drawings and verify the Harary-Hill conjecture for this new class. We show
that bishellability implies seq-shellability and exhibit a drawing of K11 which
is seq-shellable but not bishellable. Therefore, we establish that the class of seq-
shellable drawings is strictly larger than the class of bishellable drawings.

The outline of this paper is as follows. In section 2 we present the preliminar-
ies, and in particular the background on k-edges, cumulated k-edges and their
usage for verifying the Harary-Hill conjecture. In section 3 we define simple se-
quences and their usage for proving lower bounds on the number of invariant
edges. We present the definition of seq-shellability, verify the Harary-Hill con-
jecture for the new class and show its superiority towards the class of bishellable
drawings. Finally, in section 4 we draw our conclusion and close with open ques-
tions.

2 Preliminaries

Formally, a drawing D of a graph G on the plane is an injection φ from the vertex
set V into the plane, and a mapping of the edge set E into the set of simple
curves, such that the curve corresponding to the edge e = uv has endpoints
φ(u) and φ(v), and contains no other vertices [14]. We call an intersection point
of the interior of two edges a crossing and a shared endpoint of two adjacent
edges is not considered a crossing. The crossing number cr(D) of a drawing D
equals the number of crossings in D and the crossing number cr(G) of a graph
G is the minimum crossing number over all its possible drawings. We restrict
our discussions to good drawings of Kn, and call a drawing good if (1) any two
of the curves have finitely many points in common, (2) no two curves have a
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point in common in a tangential way, (3) no three curves cross each other in the
same point, (4) any two edges cross at most once and (5) no two adjacent edges
cross. It is known that every drawing with a minimum number of crossings is
good [13]. In the discussion of a drawing D, we call the points also vertices, the
curves edges and V denotes the set of vertices (i.e. points), and E denotes the
edges (i.e curves) of D. If we subtract the drawing D from the plane, a set of
open discs remain. We call F(D) := R2 \D the set of faces of the drawing D. If
we remove a vertex v and all its incident edges from D, we get the subdrawing
D−v. Moreover, we might consider the drawing to be on the surface of the sphere
S2, which is equivalent to the drawing on the plane due to the homeomorphism
between the plane and the sphere minus one point.

In [5] Ábrego et al. introduce bishellable drawings.

Definition 1 (Bishellability [5]). For a non-negative integer s, a drawing
D of Kn is s-bishellable if there exist sequences a0, a1, . . . , as and bs, bs−1, . . . ,
b1, b0, each sequence consisting of distinct vertices of Kn, so that with respect to
a reference face F :

(i) For each i ∈ {0, . . . , s}, the vertex ai is incident to the face of
D − {a0, a1, . . . , ai−1} that contains F ,

(ii) for each i ∈ {0, . . . , s}, the vertex bi is incident to the face of
D − {b0, b1, . . . , bi−1} that contains F , and

(iii) for each i ∈ {0, . . . , s}, the set {a0, a1, . . . ai} ∩ {bs−i, bs−i−1, . . . , b0}
is empty.

The class of bishellable drawings contains all drawings that are (bn2 c − 2)-
bishellable. In order to show that if a drawing D is (bn2 c − 2)-bishellable, the
Harary-Hill conjecture holds for D, Ábrego et al. use the notion of k-edges. The
origins of k-edges lie in computational geometry and problems over n-point set,
especially problems on halving lines and k-set [3]. An early definition in the ge-
ometric setting goes back to Erdős et al [7]. Given a set P of n points in general
position in the plane, the authors add a directed edge e = (pi, pj) between the
two distinct points pi and pj , and consider the continuation as line that sepa-
rates the plane into the left and right half plane. There is a (possibly empty)
point set PL ⊆ P on the left side of e, i.e. left half plane. Erdős et al. assign
k := min(|PL|, |P \ PL|) to e. Later, the name k-edge emerged and Lovász et
al. [10] used k-edges for determining a lower bound on the crossing number of
rectilinear graph drawings. Finally, Ábrego et al. [1] extended the concept of
k-edges from rectilinear to topological graph drawings.

Every edge in a good drawing D of Kn is a k-edge with k ∈ {0, . . . , bn2 c−1}.
Let D be on the surface of the sphere S2, and e = uv be an edge in D and
F ∈ F(D) be an arbitrary but fixed face; we call F the reference face. Together
with any vertex w ∈ V \ {u, v}, the edge e forms a triangle uvw and hence
a closed curve that separates the surface of the sphere into two parts. For an
arbitrary but fixed orientation of e one can distinguish between the left part and
the right part of the separated surface. If F lies in the left part of the surface, we
say the triangle has orientation + else it has orientation −. For e there are n− 2
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possible triangles in total, of which 0 ≤ i ≤ n − 2 triangles have orientation +
(or −) and n− 2− i triangles have orientation − (or + respectively). We define
k := min(i, n − 2 − i) and say e is an k-edge with respect to the reference face
F and its k-value equals k with respect to F . Ábrego et al. [1] show that the
crossing number of a drawing is expressible in terms of the number of k-edges
for 0 ≤ k ≤ bn2 c − 1 with respect to the reference face. The following definition
of the cumulated number of k-edges is helpful in determining the lower bound
of the crossing number.

Definition 2 (Cumulated k-edges [1]). Let D be good drawing and Ek(D)
be the number of k-edges in D with respect to a reference face F ∈ F(D) and
for k ∈ {0, . . . , bn2 c − 1}. We call

E≤≤k(D) :=

k∑
i=0

(k + 1− i)Ei(D)

the cumulated number of k-edges with respect to F .

We also write cumulated k-edges or cumulated k-value instead of cumulated
number of k-edges. Lower bounds on E≤≤k(D) for 0 ≤ k ≤ bn2 c − 2 translate
directly into a lower bound for cr(D).

Lemma 1. [1] Let D be a good drawing of Kn and F ∈ F(D). If E≤≤k(D) ≥
3
(
k+3
3

)
for all 0 ≤ k ≤ bn2 c − 2 with respect to F , then cr(D) ≥ H(n). �

If a vertex v is incident to the reference face, the edges incident to v have a
predetermined distribution of k-values.

Lemma 2. [1] Let D be a good drawing of Kn, F ∈ F(D) and v ∈ V be a
vertex incident to F . With respect to F , vertex v is incident to two i-edges for
0 ≤ i ≤ bn2 c−2. Furthermore, if we label the edges incident to v counter clockwise
with e0, . . . , en−2 such that e0 and en−2 are incident to the face F , then ei is a
k-edge with k = min(i, n− 2− i) for 0 ≤ i ≤ n− 2. �

Examples for lemma 2 are the vertices incident to F in figure 1. We denote
the cumulated k-values for edges incident to a vertex v in a drawing D with
E≤≤k(D, v). Due to lemma 2 it follows that E≤≤k(D, v) =

∑k
i=0(k+1− i) · 2 =

2
(
k+2
2

)
.

Next, we introduce invariant k-edges. Consider removing a vertex v ∈ V
from a good drawing D of Kn, resulting in the subdrawing D − v. By deleting
v and its incident edges every remaining edge loses one triangle, i.e. for an edge
uw ∈ E there are only (n − 3) triangles uwx with x ∈ V \ {u, v} (instead of
the (n − 2) triangles in drawing D). The k-value of any edge e ∈ E is defined
as the minimum count of + or − oriented triangles that contain e. If the lost
triangle had the same orientation as the minority of triangles, the k-value of e is
reduced by one else it stays the same. Therefore, every k-edge in D with respect
to F ∈ F(D) is either a k-edge or a (k − 1)-edge in the subdrawing D − v with
respect to F ′ ∈ F(D − v) and F ⊆ F ′. We call an edge e invariant if e has the
same k-value with respect to F in D as for F ′ in D′. We denote the number
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of cumulated invariant k-edges between D and D′ (with respect to F and F ′

respectively) with I≤k(D,D′), i.e. I≤k(D,D′) equals the sum of the number of
invariant i-edges for 0 ≤ i ≤ k.

0 0

0

1

1 1

1

1 1

v0 v1

v2

v3 v4

v5

0 0

0

1 1

1

1 1

v0 v1

v3 v4

v5

F F

1 1

(a) (b)

2

2

2

22

2

Fig. 1. Example: (a) shows a crossing optimal drawing D of K6 with the k-values at
the edges. (b) shows the subdrawing D−v2 and its k-values. The fat highlighted edges
v0v1, v0v4 and v1v3 are invariant and keep their k-values. The reference face is the
outer face F .

For a good drawing D of Kn, we are able to express the value of cumulated
k-edges with respect to a reference face F ∈ F(D) recursively by adding up the
cumulated (k − 1)-value of a subdrawing D − v, the contribution of the edges
incident to v and the number of invariant edges between D and D − v.

Lemma 3. [5] Let D be a good drawing of Kn, v ∈ V and F ∈ F(D). With
respect to the reference face F , we have

E≤≤k(D) = E≤≤k−1(D − v) + E≤≤k(D, v) + I≤k(D,D − v).

�

Ábrego et al. [5] use an inductive proof over k to show that for a bishellable
drawing D of Kn E≤≤k(D) ≥ 3

(
k+3
3

)
for all k ∈ {0, . . . , bn2 c− 2}. Together with

lemma 1 follows cr(D) ≥ H(n).
Here, we also use lemma 3 and show that for a seq-shellable drawing D of Kn

the lower bounds on E≤≤k(D) hold for all k ∈ {0, . . . , bn2 c − 2}. But in contrast
to [5], we use a more general and at the same time easy to follow approach
to guarantee lower bounds on the number of invariant edges I≤k(D,D − v) for
0 ≤ k ≤ bn2 c − 2.

3 Seq-Shellability

Before we proceed with the definition of seq-shellability, we introduce simple
sequences.
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3.1 Simple sequences

We use simple sequences to guarantee a lower bound of the number of invariant
edges in the recursive formulation of the cumulated k-value.

Definition 3 (Simple sequence). Let D be a good drawing of Kn, F ∈ F(D)
and v ∈ V with v incident to F . Furthermore, let Sv = (u0, . . . , uk) with ui ∈
V \ {v} be a sequence of distinct vertices. If u0 is incident to F and vertex
ui is incident to a face containing F in subdrawing D − {u0, . . . , ui−1} for all
1 ≤ i ≤ k, then we call Sv simple sequence of v.

Before we continue with a result for lower bounds on the number of invariant
edges using simple sequences, we need the following lemma.

Lemma 4. Let D be a good drawing of Kn, F ∈ F(D) and u, v ∈ V with u and
v incident to F . The edge uv touches F either over its full length or not at all
(except its endpoints).

Proof. Assume that D a is good drawing of Kn in which the edge uv touches
F only partly. We can exclude the case that an edge cuts a part out of uv by
crossing it more than once due to the goodness of the drawing (see figure 2 (a)).
The case that an edge crosses the whole face F and separates it into two faces
is also impossible, because this would contradict that both u and v are incident
to F . Therefore, a vertex x has to be on the same side of uv as F and a vertex y
on the other side such that the edge xy crosses uv. But the edge xu cannot cross
any edge uz with z ∈ V \{u} as this would contradict the goodness of D and xu
cannot leave the superface of x without separating v from F (see figure 2 (b) and
(c)). We have the symmetric case for v. Consequently, uv cannot touch F beside
its endpoints u and v (see figure 2 (d)), a contradiction to the assumption. �

u v u vu v u v

xx x

F FF F

(a) (b) (c) (d)
y y yx y

Fig. 2. (a) Due to the goodness of D an edge cannot cut a part out of the edge uv.
(b) The edges uv and ux cross, both have vertex u as endpoint thus the drawing is
not good. (c) The drawing is good but vertex v is not incident to the face F. (d) The
edge uv is crossed, the drawing is good and both vertices u and v is are incident to F ,
however uv is not incident to F .
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Corollary 1. Let D be a good drawing of Kn, F ∈ F(D) and u, v ∈ V with
both u and v incident to F . If and only if uv is a j-edge, there are exactly j or
n− 2− j vertices on the same side of uv as the reference face F . �

The following lemma provides a lower bound for the number of invariant edges
in the case that F is incident to at least two vertices and we remove one of them.

Lemma 5. Let D be a good drawing of Kn, F ∈ F(D) and v, w ∈ V with v and
w incident to F . If we remove v from D, then w is incident to at least bn2 c − 1
invariant edges.

Proof. We label the edges incident to w counter clockwise with e0, . . . , en−2 such
that e0 and en−2 are incident to the face F , and we label the vertex at the other
end of ei with ui. Furthermore, we orient all edges incident to w as outgoing
edges. Due to lemma 2 we know that w has two i-edges for 0 ≤ i ≤ bn2 c − 2.
Edge ei obtains its i-value from the minimum of say + oriented triangles and
edge en−2−i obtains its i-value from the minimum − oriented triangles (or vice
versa). Assume that vw is incident to F , i.e. vw is a 0-edge and all triangles vwu
for u ∈ V \ {v, w} have the same orientation. Consequently, all ei or all en−2−i
for 0 ≤ i ≤ bn2 c − 2 are invariant. In the case that vw is not incident to F and
is a j-edge, there are j triangles vwuh with uh ∈ V \ {v, w}, 0 ≤ h ≤ j − 1 or
n− 1− j ≤ h ≤ n− 2 and uh is on the same side of vw as F (corollary 1). This
means, each triangle wuhv is part of the majority of orientations for the k-value
of edge wuh, therefore removing v does not change the k-value and there are j
additional invariant edges incident to w if we remove v. �

The following lemma provides a lower bound for the number of cumulated in-
variant k-edges if we remove a vertex that has a simple sequence.

Lemma 6. Let D be a good drawing of Kn, F ∈ F(D) and v ∈ V with v
incident to F . If v has a simple sequence Sv = (u0, . . . , uk), then

I≤k(D,D − v) ≥
(
k + 2

2

)
with respect to F and for all k ∈ {0, . . . , bn2 c − 2}.

Proof. Let k ∈ {0, . . . , bn2 c − 2}. We know that u0 has at least k + 1 ≤ bn2 c − 1
invariant edges with respect to F and removing v. After removing vertex u0 from
drawing D, vertices v and u1 are incident to F . Since k ≤ bn2 c − 2 ≤ bn−12 c − 1
and u0 has an edge to u1 in drawing D, vertex u1 has at least k invariant edges
with respect to F and removing v in drawing D. In general, after removing
vertices u0, . . . , ui−1 from drawing D, vertices v and ui are incident to F . For
u ∈ {u0, . . . , ui−1} the edge uui in drawing D may be invariant or non-invariant,
and we have k+1−i ≤ bn2 c−1−i ≤ b

n−i
2 c−1. Therefore, ui has at least k−i+1

invariant edges in drawing D with respect to F and removing v. Summing up
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leads to

I≤k(D,D − v) ≥
k∑

i=0

(k + 1− i) =
(
k + 2

2

)
.

�

3.2 Seq-shellable drawings

With help of simple sequences we define k-seq-shellability. For a sequence of
distinct vertices a0, . . . , ak we assign to each vertex ai with 0 ≤ i ≤ k ≤ n − 2
a simple sequence Si, under the condition that Si does not contain any of the
vertices a0, . . . , ai−1.

Definition 4 (Seq-Shellability). Let D be a good drawing of Kn. We call D
k-seq-shellable for k ≥ 0 if there exists a face F ∈ F(D) and a sequence of
distinct vertices a0, . . . , ak such that a0 is incident to F and

1. for each i ∈ {1, . . . , k}, vertex ai is incident to the face containing F in
drawing D − {a0, . . . , ai−1} and

2. for each i ∈ {0, . . . , k}, vertex ai has a simple sequence Si = (u0, . . . , uk−i)
with uj ∈ V \ {a0, . . . , ai} for 0 ≤ j ≤ k − i in drawing D − {a0, . . . , ai−1}.

Notice that ifD is k-seq-shellable for k > 0, then the subdrawingD−a0 is (k−1)-
seq-shellable. Moreover, if D is k-seq-shellable, then D is also j-seq-shellable for
0 ≤ j ≤ k.

Lemma 7. If D is a good drawing of Kn and D is k-seq-shellable with k ∈
{0, . . . , bn2 c − 2}, then E≤≤k(D) ≥ 3

(
k+3
3

)
.

Proof. We proceed with induction over k. For k = 0 the reference face is incident
to at least three 0-edges and it follows that

E≤≤0(D) ≥ 3 = 3

(
0 + 3

3

)
.

For the induction step, let D be k-seq-shellable with a0, . . . , ak and the se-
quences S0, . . . , Sk. Consider the drawing D − a0 which is (k − 1)-seq-shellable
for a1, . . . , ak and S1, . . . , Sk. Since k − 1 ≤ (bn2 c − 2) − 1 ≤ (bn−12 c − 2), we
assume

E≤≤k−1(D − a0) ≥ 3

(
k + 2

3

)
.

We use the recursive formulation introduced in lemma 3, i.e.

E≤≤k(D) = E≤≤k−1(D − a0) + E≤≤k(D, a0) + I≤k(D,D − a0).
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Because a0 is incident to F , we have E≤≤k(D, a0) = 2
(
k+2
2

)
, and with the simple

sequence S0 of a0 follows I≤k(D,D− a0) ≥
(
k+2
2

)
(see lemma 6). Together with

the induction hypothesis, we have

E≤≤k(D) ≥ 3

(
k + 2

3

)
+ 2

(
k + 2

2

)
+

(
k + 2

2

)
= 3

(
k + 3

3

)
.

�

Using lemmas 1 and 7, we are able to verify the Harary-Hill conjecture for seq-
shellable drawings.

Theorem 1. If D is a good drawing of Kn and D is (bn2 c − 2)-seq-shellable,
then cr(D) ≥ H(n).

Proof. Let D be a good drawing of Kn and (bn2 c − 2)-seq-shellable. Since D is
(bn2 c − 2)-seq-shellable, it is also k-seq-shellable for 0 ≤ k ≤ bn2 c − 2. We apply
lemma 7 and have E≤≤k(D) ≥ 3

(
k+3
3

)
for 0 ≤ k ≤ bn2 c−2 and the result follows

with lemma 1. �

If a drawing D of Kn is (bn2 c − 2)-seq-shellable, we omit the (bn2 c − 2) part and
say D is seq-shellable. The class of seq-shellable drawings contains all drawings
that are (bn2 c − 2)-seq-shellable.

Theorem 2. The class of seq-shellable drawings strictly contains the class of
bishellable drawings.

Proof. First, we show that k-bishellability implies k-seq-shellability. Let D be
a k-bishellable drawing of Kn with the associated sequences a0, . . . , ak and
b0, . . . , bk. In order to show that D is k-seq-shellable, we choose a0, . . . , ak as
vertex sequence and k simple sequences Si for 0 ≤ i ≤ k such that Si =
(b0, . . . , bk−i). We assign simple sequence Si to vertex ai for each 0 ≤ i ≤ k
and see that D is indeed seq-shellable. Furthermore, drawing H of K11 in figure
3 is not bishellable but seq-shellable. It is impossible to find sequences a0, . . . , a3
and b0, . . . , b3 in H that fulfill the definition of bishellability. However, H is
seq-shellable for face F , vertex sequence (v0, v2, v3, v4) and the simple sequences
S0 = (v1, v2, v7, v4), S1 = (v1, v8, v6), S2 = (v1, v8) and S3 = (v1). �

The distinctive difference between seq-shellability and bishellability is that
the latter demands a symmetric structure in the sense that we can mutually
exchange the sequences a0, . . . , ak and b0, . . . , bk. Thus, the sequence b0, . . . , bk−i
has to be the simple sequence of ai in the subdrawing D − {a0, . . . , ai−1} for
all 0 ≤ i ≤ k and vice versa, i.e. the sequence a0, . . . , ak−i has to be the simple
sequence of bi in the subdrawing D − {b0, . . . , bi−1} for all 0 ≤ i ≤ k. With seq-
shellability we do not have this requirement. Here we have the vertex sequence
a0, . . . , ak and each vertex ai with 0 ≤ i ≤ k has its own (independent) simple
sequence Si.

Figure 5 shows a gadget that visualizes the difference between bishellability
and seq-shellability: (a) shows a substructure with nine vertices that may occur
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v10

v4

v7

v2

v6

v1

v3 v8
v0

v5

v9

F

Fig. 3. Drawing H of K11 which is not bishellable for any face, however it is seq-
shellable for face F , vertex sequence (v0, v2, v3, v4) and the simple sequences S0 =
(v1, v2, v7, v4), S1 = (v1, v8, v6), S2 = (v1, v8) and S3 = (v1). Vertex v0 and the vertices
of S0 are highlighted as unfilled and filled squares.

v10

v4

v7

v2

v6

v1

v3 v8

v5

v9

F

Fig. 4. Subdrawing H−v0 after removing vertex v0 and its incident edges. The second
vertex of the vertex sequence v2 is incident to the face containing F and has simple
sequence S1. Vertex v2 and the vertices of S1 are highlighted as unfilled and filled
squares.
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in a drawing. We have the simple sequence v1, v2, v4 for vertex v3 in (b) and
(c). Therefore, we can remove vertex v3 and are able to guarantee the number
of invariant edges. After removing vertex v3 in (d), there are simple sequences
for vertex v1 and v2, thus the substructure is seq-shellable. However, it is im-
possible to apply the definition of bishellability. We may use, for example, se-
quence v1, v2, v4 as a0, . . . , ak sequence and we need a second sequence (the b
sequence) that satisfies the exclusion condition of the bishellability, i.e. for each
i ∈ {0, . . . , k}, the set {a0, a1, . . . ai} ∩ {bk−i, bk−i−1, . . . , b0} has to be empty
(see definition 1). The first vertex of our second sequence (i.e. b0) has to be v3,
because b0 has to be incident to F . Now, for the second vertex we have to satisfy
{a0, a1} ∩ {b1, b0} = ∅, thus the second vertex has to be different from the first
two vertices of the sequence v1, v2, v4. Because we only can choose between ver-
tices v1 and v2, we cannot select a second vertex for our b sequence. Thus, the
structure is not bishellable. We can argue the same way for the other possible
sequences in the gadget.

F

v1

v2 v3

v4 F
v2 v3

v4

F
v3

v4 F

v1

v2

v4

(a) (b)

(c) (d)

Fig. 5. The gadget does not allow for a bishellability sequence, because only one of
the two sequences a0, . . . , ak or b0, . . . , bk can be chosen due to condition three of the
definition of bishellability. However, the gadget is seq-shellable.

4 Conclusion

In this work, we introduced the new class of seq-shellable drawings and verified
the Harary-Hill conjecture for this class. Seq-shellability is a generalization of
bishellability, thus bishellability implies seq-shellability. In addition we exhibited
a drawing of K11 which is seq-shellable but not bishellable, hence seq-shellability
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is a proper extension of bishellability. So far, we are not aware of an optimal
seq-shellable but non-bishellable drawing and we close with the following open
questions:

1. Can we find a construction method to obtain optimal drawings of Kn that
are seq-shellable but not bishellable?

2. Does there exists a non-bishellable but seq-shellable drawing of Kn with
10 ≤ n < 14, such that after removing the first vertex of the simple sequence
the drawing D− a0 is still non-bishellable. We found a drawing of K14 with
this property.
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