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Online interval scheduling to maximize total satisfaction

Koji M. Kobayashi

Abstract

The interval scheduling problem is one variant of the scheduling problem. In this paper, we
propose a novel variant of the interval scheduling problem, whose definition is as follows: given
jobs are specified by their release times, deadlines and profits. An algorithm must start a job
at its release time on one of m identical machines, and continue processing until its deadline on
the machine to complete the job. All the jobs must be completed and the algorithm can obtain
the profit of a completed job as a user’s satisfaction. It is possible to process more than one job
at a time on one machine. The profit of a job is distributed uniformly between its release time
and deadline, that is its interval, and the profit gained from a subinterval of a job decreases in
reverse proportion to the number of jobs whose intervals intersect with the subinterval on the
same machine. The objective of our variant is to maximize the total profit of completed jobs.

This formulation is naturally motivated by best-effort requests and responses to them, which
appear in many situations. In best-effort requests and responses, the total amount of available
resources for users is always invariant and the resources are equally shared with every user.
We study online algorithms for this problem. Specifically, we show that for the case where
the profits of jobs are arbitrary, there does not exist an algorithm whose competitive ratio is
bounded. Then, we consider the case in which the profit of each job is equal to its length, that
is, the time interval between its release time and deadline. For this case, we prove that for
m = 2 and m ≥ 3, the competitive ratios of a greedy algorithm are at most 4/3 and at most
3, respectively. Also, for each m ≥ 2, we show a lower bound on the competitive ratio of any
deterministic algorithm.

1 Introduction

The interval scheduling problem is one of the variants of the scheduling problem, which has been

widely studied. One of the most basic definitions is as follows: We have m ≥ 1 identical machines

and jobs are given. A job is characterized by the release time, deadline and weight (or value). To

complete a job, we must start to process it at its release time on a machine of the m machines,

and continue processing it until its deadline on that machine. That is, the processing time (or

length) of the job is the time interval between its release time and deadline. The number of jobs

which can be processed on one machine at a time is at most one. The objective of an algorithm

is to maximize the total weight of completed jobs. There are many applications of the interval

scheduling problem, such as bandwidth allocation and vehicle assignment (see e.g., [13, 14]). Many

variants of this problem have been proposed and extensively studied. Furthermore, research on

online settings has also been considered. In an online variant of the interval scheduling problem,

a job arrives at its release time and an online algorithm must decide whether it processes the job

before the next job arrives. The performance of online algorithms is evaluated using competitive

analysis [3, 19]. For any input, if the total weight gained by an optimal offline algorithm is at most

c times that gained by an online algorithm, the online algorithm is c-competitive.

In this paper, we introduce a novel variant of the interval scheduling problem. In many existing

variants of the interval scheduling problem, jobs (or users) require resources for an algorithm, and
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the algorithm assigns the required resources of a machine to the job. Thus, the number of jobs

assigned to one machine at a time is subject to the maximum amount of resources of the machine.

The amount is generally one; that is, at most one job can be processed at a time on one machine in

most variants. Therefore, we can regard such existing variants as formulating resource reservation

requests by users, who designate the amount of resources they want to use in advance and the

responses to them. However, it is not always possible for users to designate the amount of resources

they want when they issue requests. Additionally, there are not necessarily sufficient resources of

a machine to meet users’ requests. Thus, we focus on a best-effort method to manage situations,

which is often considered paired with resource reservation methods. In this method, the amount of

resources of a machine is always invariant and the resources are equally shared by users who want to

use the resources at the same time. Then, we formulate best-effort requests and responses to them

as a variant of the interval scheduling problem. Specifically, we remove the capacity constraints

from machines in our variant, which makes it possible to assign jobs unlimitedly on one machine

at a time. To the best of our knowledge, this is the first such formulation of the interval scheduling

problem. this is the first formulation as the interval scheduling problem. A suggestion ”the first

such formulation of the interval scheduling problem.” Consider a given job as a user’s request. If

a machine processes the request using sufficient resources, the user is sufficiently satisfied with the

result obtained from the process. Conversely, if there are not sufficient resources to process the

request, the user is less satisfied with the result than usual. Then, the objective of our variant

is to maximize the total satisfaction gained by users. Bandwidth allocation in networks is one

of the most suitable examples for best-effort requests and responses. In this example, the total

bandwidth which may be supplied to users on the same communication link is fixed in advance,

and all users share the bandwidth. Hence, the fewer users which use the communication link at a

time, the greater the bandwidth which each one can use, which means that the effective speed of

the communication link is higher for the users. Conversely, the more people there are using link

simultaneously, the lower the effective speed for each user. As a result, if the bandwidth for a user

is high, then the user’s satisfaction is high. Otherwise, it is low. Best-effort requests and responses

such as bandwidth allocation could happen in many cases, for example, the use of facilities, such as

swimming pools and gyms, passenger trains without reservations, and buffet style meals. Therefore,

we have sufficient incentives to study our variant.

Our Results. In this paper, we propose and analyze a novel variant of the interval scheduling

problem. We study online algorithms for this problem. Specifically, in the case where the profits

of jobs are arbitrary; that is, the profits are not relevant to the lengths of jobs, we show that the

competitive ratio of any deterministic algorithm is unbounded. Then, we introduce the profits of

jobs are equal to their lengths, which is a more natural case, called the uniform profit case. In this

case, the total amount of time during which at least one job is scheduled on a machine is equal to

the total amount of the satisfaction gained on the machine. That is, the objective of this case can

be regarded as maximizing the working hours of all the machines. We analyze the performance of

a greedy algorithm GR in this case. Since GR is a significant algorithm from a practical point of

view, it is worthwhile to evaluate its performance. When m = 2 and m ≥ 3, we show that the

competitive ratios of GR are at most 4/3 and at most 3, respectively. When m = 2, we prove that

a lower bound on the competitive ratio of GR is 4/3. That is, for m = 2, our analysis of GR is

tight. Also, we show lower bounds of any deterministic online algorithms for each m ≥ 2, which

are summarized in Table 1 and Table 2 in Sec. 5.

Related Results. Much research on the interval scheduling problem has been conducted.

Arkin and Silverberg [1] and Bouzina and Emmons [4] provided polynomial time algorithms to

solve the interval scheduling problem.
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Table 1: Our Results

m Upper bound Lower bound

2 4/3 ≤ 1.334 (10−
√
2)/7 ≥ 1.226

3

3

7/6 ≥ 1.166

4 (22− 2
√
2)/17 ≥ 1.127

5 (420 − 15
√
7)/333 ≥ 1.142

6 (51− 6
√
2)/41 ≥ 1.140

∞ (48− 2
√
2)/41 ≥ 1.101

There is also much research on online interval scheduling problems. If an online algorithm

aborts a job J which was placed on a machine, then we say that the algorithm preempts J . In the

case in which preemption is allowed, Faigle and Nawijn [9] designed a 1-competitive algorithm to

maximize the number of completed jobs. This algorithm was independently discovered by Carlisle

and Lloyd [6] but used only for the offline setting. Moreover, for the variant in which the objective

is to maximize the total weight of completed jobs, Woeginger [20] showed that no any competitive

deterministic algorithm exists (even) for m = 1. Canetti and Irani [5] provided a randomized online

algorithm whose competitive ratio is O(log∆) and proved that a lower bound on the competitive

ratio of any randomized algorithm is Ω(
√

log ∆/ log log∆), where ∆ is the ratio of the longest length

to the shortest length. This result indicates that the competitive ratio of an online algorithm may

become worse depending on a given input even if it is supported by randomization. Additionally,

the setting in which the jobs are unit length has been extensively studied. For the one machine

setting, Woeginger [20] designed a deterministic algorithm whose competitive ratio is at most 4 and

showed that this is the best possible ratio. There has also been much work regarding randomized

algorithms (e.g. [18, 16, 10, 8, 11, 12]). When m = 1, the current best upper and lower bounds on

the competitive ratios of randomized algorithms are 2 by Fung et al. [12] and 1 + ln 2 ≥ 1.693 by

Epstein and Levin [8], respectively. For m ≥ 2, Fung et al. [11] proved that, if m is even, an upper

bound is 2, and otherwise 2 + 2/(2m − 1). However, for m = 2, the current best lower bound is 2

by Fung et al. [10]. When each m ≥ 3, Fung et al. [11] indicated that we can obtain a lower bound

of 1 + ln 2 ≥ 1.693 in a similar manner to the lower bound of Epstein and Levin [8]. If preemption

is not allowed, Lipton and Tomkins [15] proposed a randomized algorithm whose competitive ratio

is O((log ∆)1+ǫ) and proved that a lower bound of any randomized algorithms is Ω(log∆).

For a job given in the interval scheduling problem, its length is equal to the length of the time

between its release time and deadline. On the other hand, a variant in which the job length is

generalized has also been studied. Specifically, a parameter slack ε > 0 is introduced, whose value

is known to an algorithm in advance, and the length of a job is at most x times as long as the

length of the time between its release time and deadline, in which x = 1/(1 + ε). In this variant,

preemption is allowed and to complete a job, an algorithm must process it during its length by its

deadline after its release time. For several m, optimal online algorithms were designed [2, 7, 17],

whose competitive ratios are 1 + 1/ε.
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2 Model Description

We have m(≥ 2) identical machines. A list consisting of n(≥ 1) jobs is provided as an input. A

job J is specified by a triplet (r, d, v), where r(J) is the release time of J , d(J) is the deadline

of J , and v(J) is the profit of J . An algorithm ALG must place each job onto one of the m

machines. It is possible to place more than one job at a time on one machine. The profit of a

job is distributed uniformly between its release time and deadline, that is its interval, and the

profit gained from a subinterval of a job decreases in reverse proportion to the number of jobs

whose intervals intersect with the subinterval on the same machine. Specifically, the profit from

the subinterval is defined as follows: For an algorithm ALG, if the numbers of jobs placed at

any two points in an interval (x, y) (x < y) are equal on ALG’s a(∈ [1,m])th machine and (x, y)

does not contain any endpoint of the interval of a job placed on the machine after processing of

the input, then we call the interval a P -interval on ALG’s ath machine. Also, let kALG(a, x, y)

denote the number of the jobs. If an algorithm ALG places a job J onto the ath machine, then we

define mALG(J) = a. For an algorithm ALG and a job J , suppose that the interval (r(J), d(J))

consists of b(≥ 1) P -intervals (xi, xi+1) (i = 1, . . . , b− 1) on ALG’s mALG(J)th machine such that

r(J) = x1 < x2 < · · · < xb = d(J). Then, we define the satisfaction (profit) which is yielded from

[xi, xi+1] of J and ALG gains as

VALG(J, i) =
xi+1 − xi

d(J) − r(J)

v(J)

kALG(mALG(J), xi, xi+1)

(see an example in Fig. 1). We define the satisfaction (profit) of J gained by ALG as

VALG(J) =
b−1
∑

i=1

VALG(J, i).

The profit of ALG for an input σ is defined as

VALG(σ) =
∑

J∈L
VALG(J),

where L is a list consisting of the n given jobs. The objective is to maximize the total satisfaction

of the n jobs.

In this paper, we consider an online variant of this problem. Specifically, n jobs are given one by

one. The jobs are not necessarily given in order of release time. An online algorithm must place a

given job to a machine before the next job is given. Once a job is placed on a machine, it cannot be

removed later. That is, preemption is not allowed. The total number n of given jobs is not known

to the online algorithm, and it does not require this information until after all the jobs arrive. We

say that the competitive ratio of an online algorithm A is at most c or A is c-competitive if, for any

input, the profit gained by an offline optimal algorithm OPT is at most c times the profit gained

by A.

3 General Profit Case

In this section, we consider the case in which the profits of jobs are arbitrary. First, we consider

the case m = 2 for better understanding of any m ≥ 3.
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1 2 3 4 50

J1

J2 J3

J4

Figure 1: An example in which four jobs Ji (i ∈ [1, 4]) are placed on the same machine. The
interval [0, 5] consists of four P -intervals [0, 1], [1, 3], [3, 4] and [4, 5]. For example, J1 exists during
the interval [0, 5] and thus the profit from [0, 1] of J1 is v(J1)/5. Also, since three jobs J1, J3
and J4 in [4, 5], the profits from this interval of J1, J3 and J4 are v(J1)/15, v(J3)/6 and v(J4)/3,
respectively.

Theorem 3.1 When m = 2, there does not exist any deterministic online algorithm whose com-

petitive ratio is bounded.

Proof. Consider a deterministic online algorithm ON . Let the profits of all the given jobs in

this proof be one. First, we outline the routine to provide ON with an input. If there exist at

least z(> 0) jobs placed during a time interval on each machine, and a new job J is included in

the interval, then ON can obtain a profit of at most v(J)/(z + 1) from J . The following routine

attempts to force each ON ’s machine to place at least z jobs during an interval. OPT places only

J onto one machine and can obtain the profit of v(J).

Step 1: Let a1 > 0 and MaxC > 0 be sufficiently large integers. ℓ := 1 and s1 := 0.

Step 2: Give 2 · MaxC jobs J such that r(J) = 0 and d(J) = 1. Let x1 (x2) denote the number of

the 2 · MaxC jobs which ON places onto the first (second) machine. Without loss of generality, we

assume that x1 ≥ x2.

Step 3: If ℓ = MaxC+ 1, then finish.

Step 4: Give aℓ jobs Jℓ,i (i = 0, 1, . . . , aℓ−1) such that r(Jℓ,i) = sℓ+pℓi/aℓ, d(Jℓ,i) = sℓ+pℓ(i+1)/aℓ,

in which p1 = 1 and for any ℓ ≥ 2, pℓ = d(Jℓ−1,1)− r(Jℓ−1,1).

Step 5: Execute one of the following two cases:

Case 5.1 (ON does not place any of Jℓ,i onto the second machine): Finish.

Case 5.2 (Otherwise): Let Jℓ,i′ be the job which placed onto the second machine by ON and

whose release time is the closest to sℓ. sℓ+1 := sℓ + pℓi
′/aℓ. Let aℓ+1 > 0 be an integer such that

(2 +
∑ℓ

j=1max{ 1
x1+1 ,

1
x2+j

}aj)/aℓ+1 is sufficiently small. ℓ := ℓ+ 1 and go to Step 3.

Let FinC denote the value of ℓ at a time when the routine finishes. Let σFinC denote the input

given to ON . For a given input σFinC, an offline algorithm OFF places aFinC jobs JFinC,i given at

the time of the final execution, that is, the FinCth execution of Step 4, onto the second machine,

and places the other jobs onto the first machine. Thus, for any FinC ≤ MaxC,

VOPT (σFinC) ≥ VOFF (σFinC) ≥ aFinC

and

VOPT (σMaxC+1) ≥ VOFF (σMaxC+1) ≥ aMaxC.
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Conversely, we consider the profit gained by ON . The number of jobs which are placed by ON on

the jth machine for each j ∈ {1, 2} immediately after Step 2 is xj, and ON can gain profit 1/xj
per job. Since the profit of a job does not increase, the total profit which ON gains from all the

jobs given in Step 2 is at most two at the end of the input.

By the definition of Case 5.2, jobs in the ℓ(∈ [2, FinC−1])th execution of Step 4 are given in an

interval where ON places jobs given in the ℓ− 1st execution of Step 4 (Fig. 2). Thus, there exist

x2 + ℓ− 1 jobs during the interval [sℓ, sℓ + pℓ] on ON ’s second machine immediately before the ℓth

execution of Step 4. Hence, in the case where Case 5.2 is executed after the ℓth Step 4, the profit

of a job given in the ℓth Step 4 is at most max{ 1
x1+1 ,

1
x2+ℓ

} immediately after the ℓth execution

of Step 4. Thus, the total profit of the jobs given in the ℓth Step 4 is at most max{ 1
x1+1 ,

1
x2+ℓ

}aℓ.
Conversely, if Case 5.1 is executed, the profit of a job given in the ℓth Step 4 is at most 1

x1+1 . Thus,

the total profit is at most aℓ
x1+1 . Additionally, x1 ≥ MaxC because both x1 ≥ x2 and x1+x2 = 2·MaxC

by definition. Therefore, if the routine finishes in Case 5.1 when FinC ≤ MaxC, we have

VON(σFinC) ≤ 2 +

FinC−1
∑

j=1

max

{

1

x1 + 1
,

1

x2 + j

}

aj +
aFinC
x1 + 1

< 2 +

FinC−1
∑

j=1

max

{

1

x1 + 1
,

1

x2 + j

}

aj +
aFinC
MaxC

,

where the second inequality follows from the fact that x1 ≥ MaxC. In addition, if the routine finishes

in Step 3, that is, FinC = MaxC+ 1, we have

VON (σMaxC+1) ≤ 2 +
MaxC
∑

j=1

max

{

1

x1 + 1
,

1

x2 + j

}

aj

≤ 2 +

MaxC−1
∑

j=1

max

{

1

x1 + 1
,

1

x2 + j

}

aj +
aMaxC
MaxC

.

By the above argument, if FinC ≤ MaxC,

VOPT (σFinC)

VON (σFinC)
≥ aFinC

2 +
∑

FinC−1
j=1 max{ 1

x1+1 ,
1

x2+j
}aj + aFinC/MaxC

≥ aFinC
aFinCδFinC + aFinC/MaxC

≥ 1

δFinC + 1/MaxC
,

where δFinC = (2 +
∑

FinC−1
j=1 max{ 1

x1+1 ,
1

x2+j
})/aFinC. Note that as both δFinC and 1/MaxC tend to

zero, 1/(δFinC + 1/MaxC) tends to infinity. In a similar manner,

VOPT (σMaxC+1)

VON (σMaxC+1)
≥ MaxC.

Theorem 3.2 For any m, there does not exist a competitive deterministic algorithm.

Proof(sketch). In Theorem 3.1, we use the routine to force the numbers of jobs existing during an

interval on both machines of an online algorithm ON to approach a sufficiently large integer MaxC.
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s1=0 1

...J1,0 J1,1 J1,2 J1,3 J1,4 J1,a1-1

s2=2p1/a1

...J2,0 J2,1 J2,2 J2,3 J2,a2-1

p1/a1
2p1/a1 3p1/a1

4p1/a1 5p1/a1 p1/a1(a1-1)

3p1/a1

s3=s2+p2/a2

...J3,0 J3,2 J3,3 J3,a3-1

s2+2p2/a2

s2+p2/a2 s2+2p2/a2
s2+3p2/a2 s2+4p2/a2 p2/a2s2+(a2-1)

..
.

J3,1 J3,4 J3,5

s3+p3/a3 s3+2p3/a3 s3+3p3/a3 s3+4p3/a3 s3+5p3/a3 s3+6p3/a3 p3/a3s3+(a3-1)

Figure 2: Execution example of Step 4 and Case 5.1 in the routine. For jobs J1,i (i = 0, . . . , a1− 1)
given in Step 4, the top figure shows that ON places J1,0 and J1,1 onto the first machine and
J1,2, which is represented by a gray rectangle, onto the second machine. At the second execution
of Step 4, s2 = 2p1

a1
and jobs J2,i (i = 0, . . . , a2 − 1) are given in the interval [r(J1,2), d(J1,2)] =

[s2, s2 + p2]. In the same way, jobs J3,i (i = 0, . . . , a3 − 1) are given in [r(J2,1), d(J2,1)]. Thus,
x2 + ℓ − 1 jobs are placed on ON ’s second machine in [sℓ, sℓ + pℓ] immediately after the ℓth
execution of Step 4.

Thus, while OPT can gain the profit of aMaxC (aFinC) from aMaxC (aFinC) jobs given in Step 4 of the

routine, ON gains only at most approximately aMaxC
MaxC

(aFinC
MaxC

). In a similar manner, we can construct

the input σ to force the number of jobs which ON places during an interval on each of m machines

to approach MaxC. As a result, we have VOPT (σ)
VON (σ) ≥ MaxC.

4 Upper Bounds for Uniform Profit Case

In this section, we consider the uniform profit case, that is, the case in which the profit of a job is

equal to its length. In this case, the total amount of time during which at least one job is scheduled

on a machine is equal to the total amount of the satisfaction gained on the machine. That is, the

objective of this case can be regarded as maximizing the working hours of all the machines.

4.1 Preliminaries

After the end of the input, we need to evaluate the profit from each job by OPT using the profits

yielded from intervals of jobs scheduled by GR to analyze the performance of GR. Then, we classify

intervals (or points) in a job J by GR or OPT into the following four categories depending on the

behaviors of GR and OPT for J .

For any two intervals I = [t1, t2] and I ′ = [t′1, t
′
2], we say that I intersects with I ′ if t′1 < t2 and

t1 < t′2. For any job J , we call the interval [r(J), d(J)] the interval of J . If an algorithm ALG
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places two jobs onto the same machine and they intersect, then we say that they overlap. For any

interval I = [t, t′], we call the value of t′ − t the length of I, written as |I|.
We give the definition of a greedy algorithm GR and analyze its performance in this section.

GR places a given job J onto the machine on which GR gains the largest profit from J . The

tie-breaking rule selects the minimum indexed machine.

For ease of analyzing, we introduce the following idea. Suppose that two jobs J1 and J2 are

placed onto the same machine, and they overlap in an interval I. Also, suppose that J1 is the first

job placed in I on the machine. Then, pretend that the profits from I of J1 and J2 are |I| and
zero, respectively. That is, we pretend that a job which is placed chronologically first in an interval

on a machine monopolizes the machine power in the interval. Note that in the uniform profit case,

the total profit gained from an interval of jobs placed on a machine depends not on how large the

number of the jobs in the interval is but on whether there exists at least one job placed in the

interval. That is why this assumption does not affect the profit of any algorithm.

4.2 Overview of Analysis

To evaluate the performance of GR, that is, its competitive ratio, we bound the profit of OPT at

the end of the input using that of GR. Then, we classify intervals of jobs placed by either GR or

OPT into four categories.

For any job J and any interval I ⊆ [r(J), d(J)], if the profit gained from I of J by GR is zero

and that by OPT is |I|, then we call I of J an OPT extra interval of J (denoted as an oe-interval,

for short) (see Fig. 3). Also, if the profit gained from I of J by OPT is zero and that by GR is

|I|, then we call I of J a GR extra interval of J (a ge-interval, for short). If the profits gained

from I of J by GR and OPT are both |I|, we call I of J a common interval of J (a c-interval,

for short). For ease of presentation, we call an interval which is a c-interval or a ge-interval a

profit interval (a p-interval, for short). If the profits gained from I of J by GR and OPT are both

zero, we call I of J a non-profit interval of J (an n-interval, for short). Further, we call a point

in an oe-interval (a ge-interval, a c-interval, and a p-interval, respectively) of J an oe-fraction (a

ge-fraction, a c-fraction, and a p-fraction, respectively) of J .

We evaluate the competitive ratio of GR by “assigning” p-fractions (i.e., p-intervals) to all oe-

fractions (i.e., oe-intervals) according to a routine, which is defined later. This “assignment” is

realized by some functions. Let Voe(σ) be the total length of oe-intervals to which c-intervals are

assigned. Let Voe′(σ) be the total length of oe-intervals to which ge-intervals are assigned. Also,

let Vc(σ) be the total length of c-intervals and Vge(σ) be the total length of ge-intervals. Then, we

have by definition,

VGR(σ) = Vc(σ) + Vge(σ) (1)

and

VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ). (2)

We will show the following three properties of the assignments by the routine:

1. Each oe-fraction is assigned a p-fraction,

2. a c-fraction of a job given to GR is assigned at most twice, and

3. a ge-fraction is assigned at most three times.

To show these, we will construct sequentially three functions M1,M2 and M3 from oe-intervals to

p-intervals satisfying the following properties: Initially, for any oe-fraction f and any i ∈ {1, 2, 3},
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Mi(f) = ∅. At the end of the input, for any oe-fraction f , M1(f) ∪M2(f) ∪M3(f) 6= ∅. There

exists a p-fraction f ′ such that M1(f) = f ′ if M1(f) 6= ∅. There exists a ge-fraction f ′ such that

M2(f) = f ′ if M2(f) 6= ∅. There exists a p-fraction f ′ such that M3(f) = f ′ if M3(f) 6= ∅. For

any oe-fractions f and f ′(6= f) and any i ∈ {1, 2, 3}, Mi(f) ∩Mi(f
′) = ∅. Then, we have by these

functions,

Voe(σ) ≤ 2Vc(σ) (3)

and

Voe′(σ) ≤ 3Vge(σ). (4)

By Eq. (2), we have

VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ)

≤ Vc(σ) + 2Vc(σ) + 3Vge(σ) (by Eqs. (3) and (4))

= 3(Vc(σ) + Vge(σ)) = 3VGR(σ), (by Eq. (1))

which leads to the following theorem:

J5

1 2 3 40

J1

J2

GR

J4

J5

J31st

2nd

J1

J2

OPT

J4

J31st

2nd

Figure 3: An example in which five jobs Ji (i ∈ [1, 5]) are given when m = 2. The top (bottom)
figure presents jobs placed by GR (OPT ). c-intervals (ge-intervals, oe-intervals and n-interval,
respectively) are shown in blue (green, red and yellow, respectively) squares. The intervals [1, 2] of
J4 and J2 by GR overlap but the intervals [1, 2] of J4 by OPT do not. Thus, this interval of J4 is
an oe-interval. Also, neither GR nor OPT gains the profit from the interval [0, 1] of J4 and thus
this interval is an n-interval.

Theorem 4.1 For any m ≥ 2, the competitive ratio of GR is at most three.

9



4.3 Analysis of GR

For any job J and any point t ∈ [r(J), d(J)], let E(J, t) denote the total length of oe-intervals

of J in the interval [r(J), t]. For any job J , any job J ′ given before J , any interval [t1, t2] and

any a(∈ [1,m]), let Pa(J, J
′, t1, t2) denote the total length of p-intervals of GR’s jobs placed on

the ath machine which are in [t1, t2] immediately after J is placed and are not intersecting with

any n-interval of J ′. For any a(∈ [1,m]), any job J , any job J ′ given before J , and any point

t ∈ [r(J ′), d(J ′)], define ha(J, J
′, t) = t′ in which t′ is the point such that Pa(J, J

′, r(J ′), t′) = E(J ′, t)
and t′ ∈ [r(J ′), d(J ′)] immediately after J is placed onto the machine. (t′ exists by Lemma 4.2, which

is shown later.) For any i ∈ {1, 2, 3} and any p-fraction f ′, define M−1
i (f ′) = {f | Mi(f) = f ′}.

We say that a c-fraction f ′ such that M−1
1 (f ′) = ∅ is 1-assignable. We say that a ge-fraction

f ′ such that M−1
2 (f ′) = ∅ is 2-assignable. We say that a ge-fraction f ′ such that M−1

2 (f ′) 6= ∅

and M−1
1 (f ′) = ∅ is 1-assignable. If a p-fraction is 1-assignable or 2-assignable, we say that it is

assignable. Now we give the definition of the routine mentioned in the previous section. For better

understanding assignments, we give examples in Appendix A.

AssignmentRoutine

Consider a moment immediately after the jth job Jj is placed. J := (the set of Jj plus each job

Jj′ (j
′ ≤ j − 1) whose interval intersects with the interval of Jj). For any oe-fraction f of each

J ∈ J , execute the following.

Step 1: For each i ∈ {1, 2, 3}, Mi(f) := ∅. t1 := h1(Jj , J, t), in which f exists at a point t.

Step 2: Execute one of the following two cases.

Case 2.1 (An assignable p-fraction f1 exists at t1): If f1 is 1-assignable, M1(f) := f1.

Otherwise, if f1 is 2-assignable, M2(f) := f1.

Case 2.2 (No assignable p-fraction exists at t1): By Lemma 4.3, there exists a p-fraction fa
at the point ta on some a(∈ {1,m})th machine such that M−1

3 (fa) = ∅, in which ta = ha(Jj , J, t).

(For any a′ ∈ {1,m}, there exists ta′ by Lemma 4.2.)

In the following, we first show the existence of ta in Case 2.2. Next, we show that there exists

pa in Case 2.2. That is, we prove that the routine can assign a p-fraction to each oe-fraction.

Lemma 4.2 For any a(∈ [1,m]), any job J , any job J ′ which is given before J , and any point

t ∈ [r(J ′), d(J ′)], there exists the point t′ such that ha(J, J
′, t) = t′ and t′ ∈ [r(J ′), d(J ′)] immediately

after J is placed.

Proof. Suppose that J, J ′ and t satisfy the conditions of the statement of this lemma. By the

definition of GR, GR chooses the machine mGR(J
′) when placing J ′ so that it gains the largest

profit from J ′. That is, GR chooses the machine so that the total length of the intervals of jobs which

were already placed before placing J ′ and which are intersecting with the interval of J ′ is minimized.

Hence, the total length of p-intervals on the a(∈ {1,m})th machine which are intersecting with the

interval of J ′ is at least the length of oe-intervals or n-intervals of J ′. Namely, the total length

of p-intervals on the ath machine which are not in n-intervals of J ′ and are intersecting with the

interval of J ′ is at least the length of oe-intervals of J ′. Therefore, there exists the point t′ such
that Pa(J, J

′, r(J ′), t′) = E(J ′, t) and t′ ∈ [r(J ′), d(J ′)].

Lemma 4.3 Case 2.2 is executable. That is, when Case 2.2 is executed for an oe-fraction f , f

can be assigned a p-fraction fa such that M−1
3 (fa) = ∅ immediately before executing Case 2.2.
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Proof. Suppose that the routine executes Step 2 for a placed job J ′, a job J given before J ′ and
an oe-fraction f of J . Also, suppose that f exists at a point t ∈ [r(J), d(J)] and t1 = h1(J

′, J, t)
holds.

First, we evaluate the number of p-fractions located at t1 which are required for the execution of

Step 2. Let x (y, z) denote the number of jobs whose c-fractions (oe-fractions, ge-fractions) located

at t1 immediately after J ′ is placed. Since OPT places jobs whose c-fractions or oe-fractions are

located at t1, the number of machines is at least x + y. The number of machines on which GR’s

jobs are placed at t1 is x+ z. Let w denote the number of machines on which GR places no jobs

at t1. Then,

w ≥ max{(x+ y)− (x+ z), 0} = max{y − z, 0}. (5)

By definition, the value of h1 for an oe-fraction of a job is different from that for another oe-fraction

of the job (i.e., the two oe-fractions are located at distinct points). Hence, there is a one-to-one

correspondence between oe-fractions of a job and the values of h1 for the job. That is, the number

of executions of Step 2 for a job with t1 is exactly one. Further, the interval of such job must

include t1 and t1 is not in an n-interval of the job by the definition of h1. Therefore, the number of

p-fractions which are located at t1 and required for the assignments is at most the number of jobs

such that the interval of each of the jobs includes t1 and t1 is not in an n-interval of each of them,

that is, at most x+ y + z.

Second, we evaluate the number of p-fractions which can be used for the assignments at the

execution of Step 2. The numbers of one c-fraction and one ge-fraction which can be assigned

to oe-fractions are one and two, respectively (in Case 2.1). Hence, the number of c-fractions and

ge-fractions which are located at t1 and used for the assignments is at least x+ 2z. Also, for the

ath machine on which GR places no jobs at the execution of Step 2, the routine assigns a p-fraction

located at the point ta = ha(J
′, J, t) (in Case 2.2). In the same way as the above argument, by the

definition of ha, there is a one-to-one correspondence between p-fractions of a job and the values of

ta for the job and thus, there is a one-to-one correspondence between the oe-fractions of J and the

p-fractions of J . By summing up the above numbers, the number of p-fractions for the assignments

at the execution of Step 2 is at least x+ 2z + w. Thus, we have

x+ 2z +w ≥ x+ 2z + y − z = x+ y + z,

in which the inequality follows from Eq. (5). Therefore, when the routine executes Case 2.2 for f ,

it is executable.

4.4 Upper Bound for m = 2

When m = 2, we also evaluate the competitive ratio of GR by assigning p-fractions to all oe-

fractions. In this case, we obtain a better upper bound on the competitive ratio of GR than one

for general m by implementing more detailed assignments. If the routine assigns one ge-fraction

to one oe-fraction, we say that the routine ge-assigns the ge-fraction to the oe-fraction. Also, if

the routine assigns three p-fractions to one oe-fraction, we say that the routine 3p-assigns each of

the p-fractions to the oe-fraction. We will show the following three properties by the assignments

according to the routine defined later:

1. Each oe-fraction is ge-assigned or 3p-assigned,

2. a c-fraction of a job given to GR is 3p-assigned at most once, and

3. a ge-fraction is ge-assigned at most once and is 3p-assigned at most once.
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We will show them by sequentially constructing two functions N1 and N2 from oe-intervals to

p-intervals satisfying the following properties: Initially, for any oe-fraction f and any i ∈ {1, 2},
Ni(f) = ∅. At the end of the input, for any oe-fraction f , N1(f) ∪ N2(f) 6= ∅. There exist

three distinct p-fractions f1, f2 and f3 such that N1(f) = {f1, f2, f3} if N1(f) 6= ∅. There exists

a ge-fraction f ′ such that N2(f) = f ′ if N2(f) 6= ∅. For any oe-fractions f and f ′(6= f) and

any i ∈ {1, 2}, Ni(f) ∩ Ni(f
′) = ∅. Let Voe(σ) denote the total length of oe-intervals to which

the routine 3p-assigns, and let Voe′(σ) denote the total length of oe-intervals to which the routine

ge-assigns. Thus,

Voe(σ) ≤ VGR(σ)/3

and

Voe′(σ) ≤ Vge(σ).

Then, using these inequalities, we have

VOPT (σ) = Vc(σ) + Voe(σ) + V
oe′

(σ)

≤ Vc(σ) + VGR(σ)/3 + Vge(σ) =
4

3
VGR(σ).

Therefore, we have the following theorem:

Theorem 4.4 When m = 2, the competitive ratio of GR is at most 4/3.

For any i ∈ {1, 2} and any p-fraction f ′, define N−1
i (f ′) = {f | Ni(f) = f ′}. We say that a

p-fraction f ′ is 1-assignable if N−1
1 (f ′) = ∅. Also, we say that a ge-fraction f ′ is 2-assignable if

N−1
2 (f ′) = ∅. Now we give the definition of the routine to construct the above two functions.

AssignmentRoutine2

Consider a moment immediately after a job J is placed. For any oe-fraction f of J , execute the

following.

Step 1: m2 := mGR(J) and m1 := {1, 2} \ {m2}. t1 := hm1
(J, J, t), in which f exists at a point t.

Step 2: Let f ′ be the p-fraction at t on the m2th machine (f ′ exists by the definition of oe-

fractions). Execute one of the following two cases.

Case 2.1 (f ′ is 2-assignable): N2(f) := f ′.
Case 2.2 (Otherwise): N1(f) := {f ′, f1, f2}, in which f1 is the p-fraction at t1 on GR’s m1th

machine (f1 exists by Lemma 4.2), and f2 is the p-fraction at t1 on GR’s m2th machine (f2 exists

because the interval of J contains t1 by the definition of hm1
). (By Lemma 4.5, f ′, f1 and f2 are

1-assignable.)

Lemma 4.5 Case 2.2 is executable. That is, when Case 2.2 is executed for an oe-fraction f , f

can be assigned 3 p-fractions (i.e., 3p-assigned) each of which is 1-assignable immediately before

executing Case 2.2.

Proof. We prove the lemma by induction on the number of given jobs. The statement of the lemma

is clearly true before the first job is given. We assume that Case 2.2 is executable immediately

before a job J is given, and show that it is executable for J as well. Then, suppose that the routine

executes Step 2 for an oe-fraction f of a job J at a point t. Let f ′ be the p-fraction of a job J ′

which is given before J at t on the mGR(J)th machine. First of all, consider an oe-fraction f ′′ of a
job J ′′ to which a p-fraction at t is 3p-assigned. Suppose that f ′′ is located at a point t′′.
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(i) (t′′ 6= t): Since t′′ 6= t, t = hm′

1
(J ′′, J ′′t′′), in which m′

1 = {1, 2} \mGR(J
′′). Suppose that

Ĵ(6= J ′′) is a job given before J and after J ′′. When Case 2.2 is executed for J ′′, there exists jobs

including t on the both machines, which are used for 3p-assignments to J ′′. It follows that if the

interval of Ĵ contains t, then t is in an n-interval of Ĵ . Thus, an oe-fraction not at t of Ĵ is not

3p-assigned p-fractions at t by the definition of Case 2.2 of the routine. Hence, in this case, the

number of p-fractions at t used for 3p-assignments is exactly two by the definition of Case 2.2.

Then, there exist at least three jobs (i.e., J, J ′ and J ′′) whose intervals contain t and m = 2, which

means that there exists at least one ge-fraction at t.

(ii) (t′′ = t): Since both f and f ′′ exist at t and m = 2, at least one ge-fraction exists at t.

Also, all the oe-fractions at t are only f and f ′′. Thus, the routine ge-assigns to f ′′ by executing

Case 2.1. That is, Case 2.2 is not executed. Hence, the routine does not 3p-assign p-fractions at t

to an oe-fraction of a job given before J at t. Thus, f is 1-assignable.

Now we are ready to show that it is possible for the routine to execute Case 2.2 for f . First, we

discuss the case in which p-fractions at t are ge-assigned. Since the number of jobs whose intervals

contain t is at least three and m = 2, the number of ge-fractions at t is equal to that of oe-fractions

at t. By the definition of Case 2.1, oe-fractions not at t are not ge-assigned ge-fractions at t. Hence,

there exists at least one ge-fraction at t which is 2-assignable and Case 2.1 is executed for f .

Second, we discuss the case in which p-fractions at t are not ge-assigned. We first consider the

case in which p-fractions at t are 3p-assigned. By the above discussion (i), there exists at least one

ge-fraction at t. When J is given, the ge-fraction has not been used for ge-assignments yet and the

routine ge-assigns to f in Case 2.1.

Finally, we consider the case in which p-fractions at t are not 3p-assigned. In this case, f ′ is
1-assignable when J is given. Let t1 = hm1

(J, J, t), in which m1 = {1, 2} \mGR(J). By the above

(i), an oe-fraction which can be 3p-assigned p-fractions at t1 is only f of J (i.e., even if the interval

of a job with another oe-fraction contains t1, t1 is in an n-interval of the job). An oe-fraction at t1
is not 3p-assigned a p-fraction at t1 by above (ii). Therefore, p-fractions at t1 are 1-assignable and

Case 2.2 is executable for f together with the 1-assignability of f ′.

We show that our analysis of GR for m = 2 is tight in the following theorem.

Theorem 4.6 When m = 2, for any ε > 0, the competitive ratio of GR is at least 4/3− ε.

Proof. Consider the following input σ. The first job J1 such that r(J1) = 0 and d(J1) = 1 is given.

The second job J2 such that r(J2) = 2− ǫ and d(J2) = 2 is given, where 0 < ǫ < 1. The third job

J3 such that r(J3) = 1 and d(J3) = 2 and the fourth job J4 such that r(J4) = 0 and d(J4) = 2 are

given. GR places J1 and J2 on the first machine, and then places J3 and J4 on the second machine.

OPT places J1, J2 and J3 on one machine and places J4 on the other machine. Thus,

VOPT (σ)

VGR(σ)
=

4

3 + ǫ
=

4

3
− ε,

in which ε = 4ǫ/(9 + 3ǫ).

5 Lower Bounds for Uniform Profit Case

In this section, we show lower bounds on the competitive ratios of online algorithms for the uniform

profit case. For better understanding, we first consider the case of m = 2.
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Theorem 5.1 When m = 2, the competitive ratio of any deterministic online algorithm is at least

(10−
√
2)/7 ≥ 1.226.

Proof. Consider an online algorithm ON . The first given job is J1 such that r(J1) = 0 and

d(J1) = 1. The second job is J2 such that r(J2) = 1 + x and d(J2) = 2 + x. Note that x is set

later. Without loss of generality, we may assume that both ON and OPT place J1 onto the first

machine.

In the following, we use two inputs. First, we consider the case where ON places J1 and J2
on two different machines. That is, suppose that ON places J2 on the second machine. Then, the

third job J3 such that r(J3) = 0 and d(J3) = 2 + x is given, and no further job arrives. We call

this input σ1. If ON places J3 onto the first machine, we have VON(σ1) = 2 + x + 1 = 3 + x.

ON also gains the same profit if ON places J3 onto the second machine. On the other hand, the

machine onto which OPT places both J1 and J2 is different from that onto which J3 is placed.

Thus, VOPT (σ1) = 2 + 2 + x = 4 + x. By the above argument,

VOPT (σ1)

VON (σ1)
=

4 + x

3 + x
. (6)

Second, we consider the case where ON places J1 and J2 onto the first machine. The third

job J ′
1 such that r(J ′

1) = 1 − y and d(J ′
1) = 1 + x and the fourth job J ′

2 such that r(J ′
2) = 1 and

d(J ′
2) = 1 + x + y are given, where y is fixed later. No further job is given; we call this input σ2.

We first consider the case where ON places J ′
1 and J ′

2 on different machines. If J ′
1 is placed onto

the first machine, on which J1 and J2 are placed,

VON (σ2) = 1 + x+ 1 + x+ y = 2 + 2x+ y. (7)

ON gains the same profit if J ′
2 is placed onto the first machine. Next, we consider the case in which

ON places J ′
1 and J ′

2 onto the machine. If the machine is the second one, then it is clear that ON

gains larger profits than it does in the other case. Hence,

VON (σ2) = 2 + x+ 2y. (8)

Now, set y = x and we have VON (σ2) = 2 + 3x by Eqs. (7) and (8). On the other hand, OPT

places both J1 and J ′
2 onto the first machine and both J2 and J ′

1 onto the second machine. Thus,

VOPT (σ2) = 2(1 + x+ y) = 2 + 4x. By the above argument,

VOPT (σ2)

VON(σ2)
=

2 + 4x

2 + 3x
. (9)

Therefore, by Eqs. (6) and (9),

VOPT (σ)

VON (σ)
≥ min

{

4 + x

3 + x
,
2 + 4x

2 + 3x

}

=
4 +

√
2

3 +
√
2
=

10−
√
2

7
,

where we choose x =
√
2.

The following theorem provides lower bounds for m ≥ 3 by generalizing the input used to prove

Theorem 5.1.

Theorem 5.2 The competitive ratio of any deterministic algorithm is at least 1.101. It is better

for fixed m and then refer to Table 2 for details.
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Proof. Consider an online algorithm ON . First, ⌈m2 ⌉(= m′) jobs J1,j (j = 1, . . . ,m′) such that

r(J1,j) = 0 and d(J1,j) = 1 are given. Let S1 denote the set of these jobs. Next, m′ jobs J2,j (j =

1, . . . ,m′) such that r(J2,j) = 1 + x and d(J2,j) = 2 + x arrive. x is set later. Let S2 denote the

set of these jobs. Let A be the set of machines onto each of which ON places at least one job from

S1 and S2. Let B be the set of machines onto which ON places at least one job from S1 but ON

does not place a job from S2. Let B′ be the set of machines onto which ON places at least one

job from S2 but ON does not place a job from S1. Let C be the set of machines onto which ON

places no jobs from either S1 or S2. Let the number of machines in A,B,B′ and C denote a, b, b′

and c, respectively. Then, we have

a+ b+ b′ + c = m, (10)

a+ b ≤ m′, (11)

and

a+ b′ ≤ m′. (12)

In the following, we provide two inputs and first consider input σ1. ⌊m2 ⌋(= m′′) jobs J3,j (j =

1, . . . ,m′′) such that r(J3,j) = 0 and d(J3,j) = 2 + x are issued. Let S3 be the set of these jobs.

Since a ≤ m′ by definition, b+ b′+ c = m−a ≥ m−m′ = m′′ by Eq. (10). Thus, ON can place

each job in S3 onto each machine in B ∪B′ ∪ C. In this way, ON gains more profits than placing

the jobs onto machines in A. Then, ON places each of min{c,m′′} jobs from S3 onto each machine

in C, and places the remaining max{m′′ − c, 0} jobs onto machines from either B or B′. Thus,

VON (σ1) ≤ 2a+ b+ b′ + (2 + x)min{c,m′′}+ (1 + x)max{m′′ − c, 0}
= a+m− c+ (2 + x)min{c,m′′}+ (1 + x)max{m′′ − c, 0} (by Eq. (10)).

When c ≥ m′′,

VON (σ1) ≤ a+m− c+(2+x)m′′ +(1+x)0 ≤ a+m−m′′+(2+x)m′′ = a+m+(1+x)m′′, (13)

where the second inequality follows from c ≥ m′′. When c < m′′,

VON (σ1) ≤ a+m− c+ (2 + x)c+ (1 + x)(m′′ − c) = a+m+ (1 + x)m′′. (14)

On the other hand, for each j = 1, . . . ,m′, OPT places both J1,j and J2,j onto the jth machine,

and places each J3,j onto each of the remaining machines. Hence,

VOPT (σ1) = 2m′ + (2 + x)m′′. (15)

Second, consider the input σ2. After J2,j (j = 1, . . . ,m′) are given, m′′ jobs J ′
1,j (j = 1, . . . ,m′′)

arrive such that r(J ′
1,j) = 1− x and d(J ′

1,j) = 1+ x. Let S′
1 denote the set of these jobs. Then, m′′

jobs J ′
2,j (j = 1, . . . ,m′′) arrive such that r(J ′

2,j) = 1 and d(J ′
2,j) = 1+2x. Let S′

2 denote the set of

these jobs. b̃ denotes the number of machines from B′ onto which ON places at least one job from

S′
1 plus the number of machines from B onto which ON places at least one job from S′

2. If ON

places at least one job from S′
1 (S′

2) onto a machine from B′ (B), then ON gains the profit of 2x

per machine in addition to the profits of jobs in S1 and S2. Let c̃1 denote the number of machines

from C each of which ON places one job from S′
1 ∪ S′

2 onto. Then, ON gains the profit of 2x per

machine. Let c̃2 denote the number of machines from C each of which ON places at least two jobs

from S′
1∪S′

2 onto. Then, ON gains the profit of at most 3x per machine. Let ã denote the number

15



of machines from A each of which ON places at least one job from S′
1 ∪ S′

2 onto. Then, ON gains

the profit of 2 + x per machine. By the above definitions and Eq. (10),

b̃ ≤ b+ b′, (16)

c̃1 + c̃2 ≤ c = m− a− b− b′, (17)

and

ã ≤ 2m′′ − b̃− c̃1 − 2c̃2. (18)

Thus, we have

VON (σ2) ≤ 2(a− ã) + b+ b′ + 2xb̃+ 2xc̃1 + 3xc̃2 + (2 + x)ã

≤ 2m′ + x(b̃+ c̃1 + c̃2) + 2xm′′ (by Eqs. (11), (12), and (18))

≤ 2m′ + x(m− a) + 2xm′′. (by Eqs. (16) and (17)) (19)

On the other hand, for every j = 1, . . . ,m′′, OPT places both J1,j and J ′
2,j onto one machine.

Additionally, OPT places both J ′
1,j and J2,j onto the remaining machines. Hence,

VOPT (σ2) = m+ 4xm′′. (20)

If m is even, then m′ = m′′ = m/2. By Eqs. (13), (14), and (15),

VOPT (σ1)

VON (σ1)
≥ 2m′ + (2 + x)m′′

a+m+ (1 + x)m′′ =
2m+ xm/2

a+ 3m/2 + xm/2
. (21)

By Eqs. (19) and (20),

VOPT (σ2)

VON (σ2)
≥ m+ 4xm′′

2m′ + x(m− a) + 2xm′′ =
m+ 2xm

m+ (2m− a)x
. (22)

If m is odd, m′ = (m+ 1)/2 and m′′ = (m− 1)/2. By Eqs. (13), (14), and (15),

VOPT (σ1)

VON (σ1)
≥ 2m+ x(m− 1)/2

a+ (3m− 1)/2 + x(m− 1)/2
, (23)

and by Eqs. (19) and (20),

VOPT (σ2)

VON (σ2)
≥ m+ 2x(m− 1)

m+ 1 + (2m− a− 1)x
. (24)

Therefore,
VOPT (σ)

VON (σ)
≥ max

x
min
a

max

{

VOPT (σ1)

VON (σ1)
,
VOPT (σ2)

VON (σ2)

}

(25)

and we can have the lower bounds in Table 2 using Eqs. (21),(22),(23),(24) and (25) for each m.
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Table 2: Lower bounds for each m(≥ 3).

m Lower Bound a x

3 7/6 ≥ 1.166 0 3

4 22−2
√
2

17 ≥ 1.127 0 2 + 2
√
2

5 420−15
√
7

333 ≥ 1.142 1 −1+
√
7

2

6 51−6
√
2

41 ≥ 1.140 2
√
2

7 280−70
√
11

227 ≥ 1.158 1 1+
√
11

2

m Lower Bound a x

8 28/25 ≥ 1.12 2 2/3

9 9/8 ≥ 1.125 2 1

10 290−15
√
2

239 ≥ 1.124 3
√
2

11 704−11
√
22

582 ≥ 1.120 2 1+
√
22

3

∞ 48−2
√
2

41 ≥ 1.101 m/4
√
2

6 Conclusions

In this paper, we have proposed a novel variant of the interval scheduling problem focusing on best-

effort services. For this variant, we have proved that the competitive ratios of an online greedy

algorithm are at most 4/3 and 3 for m = 2 and m ≥ 3, respectively. Also, we have shown a lower

bound on the competitive ratio of any deterministic algorithm for each m. We finish the paper by

providing some open questions: (i) In the setting studied in the paper, preemption is not allowed.

Then, if preemption is allowed, can we design a competitive algorithm for the general profit case?

(ii) Will randomization help to improve our results? (iii) An obvious open problem is to close

the gaps between our lower and upper bounds for the uniform profit case. In addition, we should

discuss offline algorithms for our variant.
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A Assignment Examples

In all the figures of this section, c-intervals (ge-intervals, oe-intervals and n-interval, respectively)

are shown in blue (green, red and yellow, respectively) squares. Also, only GR’s jobs and machines

are shown. Our assignments are realized as matchings between oe-intervals of OPT ’s jobs and

p-intervals of GR’s jobs. However, for ease of presentation, the assignments are presented as

matchings between oe-intervals of “GR’s jobs” and p-intervals of GR’s jobs. For example, in the

situation of Fig. 4, the routine assigns the interval [1, 2] of GR’s J1 to the interval [0, 1] of OPT ’s

J4 in fact. However, the assignment is described as the one from the interval [1, 2] of GR’s J1 to

the interval [0, 1] of GR’s J4 in the figure. In addition, we use situations which cannot happen to

explain assignments. For example, in Fig. 4, GR cannot place J2 onto the second machine according

to its definition but places it onto the first machine.

A.1 General m

In Fig. 4, at first, the routine assigns the c-interval [1, 2] of GR’s J1, which is placed on the first

machine, to the oe-interval [0, 1] of OPT ’s J4 in the left figure. However, after GR places J5 onto

the second machine, the routine reassigns the c-interval [1, 2] of GR’s J5 to the oe-interval [0, 1] of

OPT ’s J4, and assigns the c-interval [1, 2] of GR’s J1 to the oe-interval [0, 1] of OPT ’s J5 in the

right figure. Of course, it is possible that the routine does not change the assignment of J4 and

assigns the c-interval [1, 2] of J5 to the oe-interval [0, 1] of J5.

1 20

J3

GR

J4

J22nd

3r

J11st

1 20

J3

GR

J4

J2

J1

J5

d

2nd

3r

1st

d

assign

assign

assign

Figure 4: Assignment example 1 for general m.

In Fig. 5, the routine assigns the c-interval [0, 1] of J1 to the oe-interval [0, 1] of J4. Since the

n-interval [2, 3] of J4 exists, the routine assigns the c-interval [3, 4] of J2 to the oe-interval [1, 2] of

J4.

In Fig. 6, the routine executes Case 2.1 assigning the c-interval [1, 2] of J1 to the oe-interval

[0, 1] of J3, and assigning the c-interval [1, 2] of J3 to the oe-interval [1, 2] of J4. Then, the routine

executes Case 2.2 and assigns the c-interval [2, 3] of J6 to the oe-interval [1, 2] of J5.
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1 2 3 40

J1GR

J4

J21st

2nd J3

assignassign

Figure 5: Assignment example 2 for general m.

A.2 m = 2

In Fig. 7, the c-interval [1, 2] of J2 contains the p-fraction f ′ called in the routine. Also, the c-

interval [2, 3] of J3 and the ge-interval [2, 3] of J4 contain the p-fraction f1 and the p-fraction f2,

respectively, called in the routine. The routine executes Case 2.2 and assigns the c-interval [1, 2] of

J2, the c-interval [2, 3] of J3 and the ge-interval [2, 3] of J4 to the oe-interval [1, 2] of J4. Then, the

routine executes Case 2.1 and assigns the ge-interval [2, 3] of J4 to the oe-interval [2, 3] of J5.
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Figure 6: Assignment example 3 for general m.
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Figure 7: Assignment example for m = 2.
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