
Polygon Queries for Convex Hulls of Points∗

Eunjin Oh† Hee-Kap Ahn‡

Abstract

We study the following range searching problem: Preprocess a set P of n points in the
plane with respect to a set O of k orientations in the plane so that given an O-oriented
convex polygon Q, the convex hull of P ∩Q can be computed efficiently, where an O-oriented
polygon is a polygon whose edges have orientations in O. We present a data structure with
O(nk3 log2 n) space and O(nk3 log2 n) construction time, and an O(h+ s log2 n)-time query
algorithm for any query O-oriented convex s-gon Q, where h is the complexity of the convex
hull. Also, we can compute the perimeter or area of the convex hull of P ∩Q in O(s log2 n)
time using the data structure.

1 Introduction

Range searching is one of the most thoroughly studied problems in computational geometry for
decades from 1970s. Range trees and kd-trees were proposed as data structures for orthogonal
range searching, and their sizes and query times have been improved over the years. The most
efficient data structures for orthogonal range searching for points in the plane [6] and in higher
dimensions [7] are due to Chazelle.

There are variants of the range searching problem that allow other types of query ranges,
such as circles or triangles. Many of them can be solved using partition trees or a combination
of partition trees and cutting trees. The simplex range searching problem, which is a higher
dimensional analogue of the triangular range searching, has gained much attention in computa-
tional geometry as many other problems with more general ranges can be reduced to it. As an
application, it can be used to solve the hidden surface removal in computer graphics [4, 11].

The polygon range searching is a generalization of the simplex range searching in which
the search domain is a convex polygon. Willard [18] gave a data structure, called the polygon
tree, with O(n) space and an O(n0.77)-time algorithm for counting the number of points lying
inside an arbitrary query polygon of constant complexity. The query time was improved later
by Edelsbrunner and Welzl [13] to O(n0.695). By using the stabbing numbers of spanning trees,
Chazelle and Welzl [8] gave a data structure of size O(n log n) with an O(

√
kn log n)-time query

algorithm for computing the number of points lying inside a query convex k-gon for arbitrary
values of k with k ≤ n. When k is fixed for all queries, the size of the data structure drops to O(n).
Quite a few heuristic techniques and frameworks have been proposed to process polygon range
queries on large-scale spatial data in a parallel and distributed manner on top of MapReduce [12].
For overviews of results on range searching, see the survey by Agarwal and Erickson [2].

In this paper, we consider the following polygon range searching problem: Preprocess a set P
of n points with respect to a set O of k orientations in the plane so that given an O-oriented
∗This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the SW Starlab

support program (IITP-2017-0-00905) supervised by the IITP (Institute for Information & communications
Technology Promotion).
†Max Planck Institute for Informatics, Saarbrücken, Germany. eoh@mpi-inf.mpg.de
‡Pohang University of Science and Technology, Pohang, Korea. heekap@postech.ac.kr

1

ar
X

iv
:1

91
0.

08
71

7v
1 

 [
cs

.C
G

] 
 1

9 
O

ct
 2

01
9



convex polygon Q, the convex hull of P ∩ Q, and its perimeter and area, can be computed
efficiently, where an O-oriented polygon is a polygon whose edges have orientations in O. Here,
an orientation is defined as a unit vector in the plane. We say that an edge has an orientation o
if the edge is parallel to o.

Whereas orthogonal and simplex range queries can be carried out efficiently, it is quite
expensive for queries of arbitrary polygons in general. This is a phenomenon that occurs in
many other geometry problems. In an effort to overcome such inefficiency and provide robust
computation, there have been quite a few works on “finite orientation geometry”, for instance,
computing distances [17] in fixed orientations, finding the contour of the union of a collection of
polygons with edges of restricted orientations [16], and constructing Voronoi diagrams [3, 9] using
a distance metric induced by a convex k-gon. In the line of this research, we suggests the polygon
queries whose edges have orientations from a fixed set of orientations. Such a polygon query, as
an approximation of an arbitrary polygon, can be used in appropriate areas of application, for
instance, in VLSI-design, and possibly takes advantages of the restricted number of orientations
and robustness in computation.

Previous Works. Brass et al. [5] gave a data structure on P for a query range Q and a few
geometric extent measures, including the convex hull of P ∩Q and its perimeter or area. They
gave a data structure with O(n log2 n) space and O(n log3 n) construction time that given a
query axis-parallel rectangle Q, reports the convex hull of P ∩Q in O(log5 n+ h) time and its
perimeter or area in O(log5 n) time, where h is the complexity of the convex hull.

Both the data structure and query algorithm for reporting the convex hull of P ∩ Q were
improved by Modiu et al. [14]. They gave a data structure with O(n log n) space and O(n log n)
construction time that given a query axis-parallel rectangle Q, reports the convex hull of P ∩Q
in O(log2 n+ h) time.

For computing the perimeter of the convex hull of P ∩ Q, the running time of the query
algorithm by Brass et al. was improved by Abrahamsen et al. [1]. For a query axis-parallel
rectangle Q, their data structure supports O(log3 n) query time. Also, they presented a data
structure of size O(n log3 n) for supporting O(log4 n) query time for a 5-gon whose edges have
three predetermined orientations.

Our Result. Let P be a set of n points and let O be a set of k orientations in the plane.

• We present a data structure on P that allows us to compute the perimeter or area of the
convex hull of points of P contained in any query O-oriented convex s-gon in O(s log2 n)
time. We can construct the data structure with O(nk3 log2 n) space in O(nk3 log2 n) time.
Note that s is at most 2k because Q is convex. When the query polygon has a constant
complexity, as for the case of O-oriented triangle queries, the query time is only O(log2 n).

• For queries of reporting the convex hull of the points contained in a query O-oriented
convex s-gon, the query algorithm takes O(h) time in addition to the query times for the
perimeter or area case, without increasing the size and construction time for the data
structure, where h is the complexity of the convex hull.

• For k = 2, we can construct the data structure with O(n log n) space in O(n log n) time
whose query time is O(log2 n) for computing the perimeter or area of the convex hull of
P ∩Q and O(log2 n+ h) for reporting the convex hull.

• Our data structure can be used to improve the O(n log4 n)-time algorithm by Abrahamsen
et al. [1] for computing the minimum perimeter-sum bipartition of P . Their data structure

2



(a) (b)

C(2, 4)

C(1, 1)

Figure 1: (a) Canonical cells in a standard range tree. (b) Canonical cells in a grid-like range tree.

requires O(n log3 n) space and allows to compute the perimeter of the convex hull of points
of P contained in a 5-gon whose edges have three predetermined orientations. If we replace
their data structure with ours, we can obtain an O(n log2 n)-time algorithm for their
problem using O(n log2 n) space.

2 Axis-Parallel Rectangle Queries for Convex Hulls

We first consider axis-parallel rectangle queries. Given a set P of n points in the plane, Modiu et
al. [14] gave a data structure on P with O(n log n) space that reports the convex hull of P ∩Q
in O(log2 n+ h) time for any query axis-parallel rectangle Q, where h is the complexity of the
convex hull. We show that their data structure with a modification allows us to compute the
perimeter of the convex hull of P ∩Q in O(log2 n) time.

2.1 Data Structure

We first briefly introduce the data structure given by Modiu et al., which is called a two-layer
grid-like range tree. To obtain a data structure for computing the parameter of the convex hull
of P ∩Q for a query axis-parallel rectangle Q, we store information in each node of the two-layer
grid-like range tree.

Two-layer Grid-like Range Tree. The two-layer grid-like range tree is a variant of the
two-layer standard range tree on P . The two-layer standard range tree on P is a two-level
balanced binary search tree [10]. The level-1 tree is a balanced binary search tree Tx on the
points of P with respect to their x-coordinates. Each node α in Tx corresponds to a vertical slab
I(α). The node α has a balanced binary search tree on the points of P ∩ I(α) with respect to
their y-coordinates as its level-2 tree. In this way, each node v in a level-2 tree corresponds to an
axis-parallel rectangle B(v).

For any query axis-parallel rectangle Q, there is a set V of O(log2 n) nodes of the level-2
trees such that the rectangles B(v) of v ∈ V are pairwise interior disjoint, Q ∩ B(v) 6= ∅ for
every v ∈ V , and

⋃
v∈V(P ∩B(v)) = P ∩Q. For v ∈ V , we call B(v) a canonical cell for Q. One

drawback of this structure is that the canonical cells for Q are not aligned with respect to their
horizontal sides in general. See Figure 1(a).

To overcome this drawback, Modiu et al. [14] gave the two-layer grid-like range tree so that
the canonical cells for any query axis-parallel rectangle Q are aligned across all nodes α in
the level-1 tree with I(α) ∩ Q 6= ∅. The two-layer grid-like range tree is also a two-level tree
whose level-1 tree is a balanced binary search tree Tx on the points of P with respect to their
x-coordinates. Each node α of Tx is associated with the level-2 tree Ty(α) which is a binary

3



B(u1)

B(u2)

x

y

x

y

(a) (b)

γ1

γ2B(v)

Figure 2: (a) A node v of the level-2 tree has two children u1 and u2 such that B(v) is partitioned into
B(u1) B(u2). The dashed line segments are bridges stored in this node. The left one is the cw-bridge,
and the right one is the ccw-bridge. (b) The part of ch(v) from x to y in clockwise order is decomposed
into two polygonal curves γ1 and γ2 with respect to the bridges of ch(v).

search tree on the points of P ∩ I(α). But, unlike the standard range tree, Ty(α) is obtained
from Ty by removing the subtrees rooted at all nodes whose corresponding rectangles have no
point in P ∩ I(α) and by contracting all nodes which have only one child, where Ty is a balanced
binary search tree on the points of P with respect to their y-coordinates. Therefore, Ty(α) is not
balanced but a full binary tree of height O(log n), and it is called a contracted tree on P ∩ I(α).
By construction, the canonical cells for any axis-parallel rectangle Q are aligned.

Lemma 1 ([14]). The two-layer grid-like range tree on a set of n points in the plane can be
computed in O(n log n) time. Moreover, its size is O(n log n).

Information Stored in a Node of a Level-2 Tree. To compute the perimeter of the convex
hull of P ∩Q for a query axis-parallel rectangle Q efficiently, we store additional information
for each node v of the level-2 trees as follows. The node v has two children in the level-2 tree
that v belongs to. Let u1 and u2 be the two children of v such that B(u1) lies above B(u2). By
construction, B(v) is partitioned into B(u1) and B(u2).

Consider the convex hull ch(v) of B(v) ∩ P and the convex hull ch(ui) of B(ui) ∩ P for
i = 1, 2. There are at most two edges of ch(v) that appear on neither ch(u1) nor ch(u2). We call
such an edge a bridge of ch(v) with respect to ch(u1) and ch(u2), or simply a bridge of ch(v).
Note that a bridge of ch(v) has one endpoint on ch(u1) and the other endpoint on ch(u2). We
call the bridge of ch(v) whose clockwise endpoint lies on ch(u1) and counterclockwise endpoint
lies on ch(u2) along the boundary of ch(v) the cw-bridge of ch(v). We call the other bridge of
ch(v) the ccw-bridge of ch(v). See Figure 2(a).

For each node v of the level-2 trees, we store the two bridges of ch(v) and the length of each
polygonal chain of ch(v) lying between the two bridges. In addition, we store the length of each
polygonal chain connecting an endpoint e of a bridge of ch(v) and an endpoint e′ of a bridge of
ch(p(v)) for the parent node p(v) of v along the boundary of ch(v) if e and e′ are contained
in B(v). We do this for every pair of the endpoints of the bridges of ch(v) and ch(p(v)) that
are contained in B(v). Since only a constant number of bridges are involved, the information
stored for v is also of constant size. Each bridge can be computed in time linear in the number of
vertices of ch(u) which do not appear on ch(v) for a child u of v. The length of each polygonal
chain we store for v can also be computed in this time. Notice that a vertex of ch(u) which does
not appear on ch(v) does not appear on ch(v′) for any ancestor v′ of v. Therefore, the total
running time for computing the bridges is linear in the total number of points corresponding to

4



the leaf nodes of the level-2 trees, which is O(n log2 n).
We will use the following lemma for our query algorithm.

Lemma 2. Given a node v of a level-2 tree and two vertices x, y of ch(v), we can compute the
length of the part of the boundary of ch(v) from x to y in clockwise order along the boundary of
ch(v) in O(log n) time.

Proof. Let γ be the part of the boundary of ch(v) from x to y in clockwise order along the
boundary of ch(v). Let u1 and u2 be the children of v such that B(u1) lies above B(u2). We
consider the case that only one bridge lies on γ. We assume further that x is contained in B(u2),
and y is contained in B(u1). The other cases can be handled analogously. See Figure 2(b). Then
γ, excluding the bridge b of ch(v) lying on γ, consists of two polygonal curves, γ1 and γ2, with
γ1 lying before b and γ2 after b along γ from x.

We show how to compute the length of γ1 only. The same method works for γ2. To do this,
we traverse the level-2 tree along the path from the root to the leaf corresponding to x and
process nodes as follows. For each node v′ on the path, our task is computing the length of a
polygonal chain of ch(v′) connecting x and an endpoint of a bridge of ch(v′).

We first consider the case that γ1 contains a bridge of ch(u2). The chain γ1, excluding the
bridges of ch(u2), consists of at most three pieces because there are at most two bridges of
ch(u2). One of the pieces has one endpoint on x and the other on an endpoint of a bridge of
ch(u2), and each of the other pieces has one endpoint on an endpoint of a bridge of ch(u2) and
the other on an endpoint of a bridge of ch(v). Therefore, the lengths of the pieces of γ1 which
are not incident to x are stored in u2. Thus, it suffices to compute the piece of γ1 with endpoints
on x and an endpoint of a bridge of ch(u2). To do this, we visit the child w of u2 such that
B(w) contains x and compute the length of the piece of γ1 recursively.

Consider the case that γ1 contains no bridge of ch(u2). In this case, we find the first endpoint
e of a bridge of ch(u2) that appears first along its boundary from x in clockwise order. The
length of γ1 is equal to the length of the part γxe of the boundary of ch(u2) from x to e in
clockwise order minus the length of the part γze of the boundary from the endpoint z of γ1 other
than x to e in clockwise order. The length of γze is stored in u2. Thus it suffices to compute the
length of γxe. Since γxe connects x and an endpoint, e, of a bridge of ch(u2), we visit the child
w of u2 such that B(w) contains x and compute the length of γxe recursively.

In this way, we traverse the tree along the path from v to a leaf node in O(log n) time. Finally,
we obtain the length of γ1.

2.2 Query Algorithm

Let Q be an axis-parallel rectangle. We present an algorithm for computing the perimeter of the
convex hull of P ∩ Q in O(log2 n) time. We call the part of the convex hull from its topmost
vertex to its rightmost vertex in clockwise order along its boundary the urc-hull of P ∩Q. In the
following, we compute the length of the urc-hull γ of P ∩Q in O(log2 n) time. The lengths of
the other parts of the convex hull of P ∩Q can be computed analogously.

We use the algorithm by Overmars and van Leeuwen [15] for computing the outer tangents
between any two convex polygons.

Lemma 3 ([15]). Given any two convex polygons stored in two binary search trees of height
O(log n), we can compute the outer tangents between them in O(log n) time, where n is the total
complexity of the convex hulls.

We compute the set V of the canonical cells for Q in O(log2 n) time. Recall that the size of
V is O(log2 n). We consider the cells of V as grid cells of a grid with O(log n) rows and O(log n)

5



columns. We use C(i, j) to denote the grid cell of the ith row and jth column such that the
leftmost cell in the topmost row is C(1, 1). See Figure 1(b). Notice that a grid cell C(i, j) might
not be contained in V.

Recall that we want to compute the urc-hull of P ∩ Q. To do this, we compute the point
px with largest x-coordinate and the point py with largest y-coordinate from P ∩Q in O(log n)
time using the range tree [10]. Then we find the cells of V containing each of them in the same
time. Let C(i1, j1) and C(i2, j2) be the cells of V containing py and px, respectively.

We traverse the cells of V starting from C(i1, j1) until we reach C(i2, j2) as follows. We find
every cell C(i, j) ∈ V with i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2 such that no cell C(i′, j′) with i < i′ is in
V or no cell C(i′, j′) with j > j′ is in V . There are O(log n) such cells, and we call them extreme
cells. We can compute all extreme cells in O(log2 n) time. Note that the urc-hull of P ∩Q is the
urc-hull of points contained in the extreme cells. To compute the urc-hull of P ∩Q, we traverse
the extreme cells in the lexicographical order with respect to the first index and then the second
index.

During the traversal, we maintain the urc-hull of the points contained in the cells we visited
so far using a binary search tree of height O(log n). Imagine that we have just visited a cell
C ∈ V in the traversal. Let δ1 denote the urc-hulls of the points contained in the cells we visited
before the visit to C. Let δ2 denote the urc-hulls of the points contained in the cells we visited
so far, including C. Due to the data structure we maintained, we have a binary search tree of
height O(log n) for the convex hull ch of the points contained in C. Moreover, we have a binary
search tree of height O(log n) for δ1 from the traversal to the cells we visited so far. Therefore,
we compute the outer tangents (bridges) between them in O(log n) time by Lemma 3. The
urc-hull δ2 is the concatenation of three polygonal curves: a part of ch, the bridge, and a part of
δ1. Thus we can represent δ2 using a binary search tree of height one plus the maximum of the
heights of the binary search trees for ch and δ1.

Since we traverse O(log n) cells in total, we obtain a binary search tree of height O(log n)
representing the urc-hull of P ∩Q after the traversal. The traversal takes O(log2 n) time. Notice
that the urc-hull consists of O(log n) polygonal curves that are parts from the convex hulls stored
in cells of V and O(log n) bridges connecting them. We can compute the length of the polygonal
curve in O(log2 n) time in total by Lemma 2.

Theorem 4. Given a set P of n points in the plane, we can construct a data structure with
O(n log n) space in O(n log n)-time preprocessing that allows us to compute the perimeter of the
convex hull of P ∩Q in O(log2 n) time for any query axis-parallel rectangle Q.

Since the data structure with its construction and the query algorithm can be used for any
pair of orientations which are not necessarily orthogonal through an affine transformation, they
work for any pair of orientations with the same space and time complexities.

Corollary 5. Given a set P of n points and a set O of two orientations in the plane, we can
construct a data structure with O(n log n) space in O(n log n)-time preprocessing that allows us
to compute the perimeter of the convex hull of P ∩Q in O(log2 n) time for any query O-oriented
rectangle Q.

3 O-oriented Triangle Queries for Convex Hulls

In this section, we are given a set P of n points and a set O of k distinct orientations in the
plane. We preprocess the two sets so that we can compute the perimeter of P ∩Q for any query
O-oriented triangle Q in the plane efficiently. We construct a three-layer grid-like range tree on
P with respect to every 3-tuple (o1, o2, o3) of the orientations in O, which is a generalization of

6



o1

o3

B(v)

o1 o2 o1 o2

(a) (b) (c)

Figure 3: (a) A node of T1 corresponds to a slab of orientation o1. (b) A node of a level-2 tree
corresponds to a parallelogram having two sides of orientation o1 and two sides of orientation o2. (c) A
node v of a level-3 tree corresponds to an {o1, o2, o3}-polygon B(v).

the two-layer grid-like range tree described in Section 2.1. A straightforward query algorithm
takes O(log3 n) time since there are O(log2 n) canonical cells for a query {o1, o2, o3}-oriented
triangle Q. However, it is unclear how to obtain a faster query algorithm as the query algorithm
described in Section 2 does not generalize to this problem directly. A main reason is that a
canonical cell for any query {o1, o2, o3}-oriented triangle is a {o1, o2, o3}-oriented polygon, not a
parallelogram. This makes it unclear how to apply the approach in Section 2 to this case.

In this section, we present an O(log2 n)-time query algorithm for this problem. Our algorithm
improves this straightforward algorithm by a factor of log n. To do this, we classify canonical
cells for Q into two types. We can handle the cells of the first type as we do in Section 2 and
compute the convex hull of the points of P contained in them. Then we handle the cells of the
second type by defining a specific ordering to these cells so that we can compute the convex hull
of the points of P contained in them efficiently. Then we merge the two convex hulls to obtain
the convex hull of P ∩Q.

3.1 Data Structure

We construct a three-layer grid-like range tree on P with respect to every 3-tuple of the orientations
in O. Let (o1, o2, o3) be a 3-tuple of the orientations in O. For an index i = 1, 2, 3, we call the
projection of a point in the plane onto a line orthogonal to oi the oi-projection of the point. Let
Ti be a balanced binary search tree on the oi-projections of the points of P for i = 1, 2, 3.

Three-layer Grid-like Range Tree. The level-1 tree of the grid-like range tree is T1. Each
node of T1 corresponds to a slab of orientation o1. For each node of the level-1 tree, we construct
a contracted tree of the o2-projections of the points contained in the slab. A node of a level-2 tree
corresponds to an {o1, o2}-oriented parallelogram. For each node of a level-2 tree, we construct a
contracted tree of the o3-projections of the points contained in the {o1, o2}-oriented parallelogram.
A node v of a level-3 tree corresponds to an {o1, o2, o3}-oriented polygon B(v) with at most six
vertices. See Figure 3 for an illustration.

Information Stored in a Node of a Level-3 Tree. Without loss of generality, we assume
o3 is parallel to the x-axis. To compute the perimeter of the convex hull of P ∩Q for a query
O-oriented triangle Q, we store additional information for each node v of a level-3 tree as follows.
The node v has two children u1 and u2 in the level-3 tree that v belongs to such that B(u1) lies

7



o3

o1
o2

B(v)

B(u1)

B(u2)

ch(u1)

ch(u2)

Figure 4: A node v of a level-3 tree has two children u1 and u2 such that B(v) is partitioned into B(u1)
and B(u2) with B(u1) lying above B(u2). There are at most two bridges of ch(v), each has one endpoint
on ch(u1) and the other on ch(u2).

above B(u2). By construction, B(v) is partitioned into B(u1) and B(u2). See Figure 4 for an
illustration.

Consider the convex hull ch(v) of P ∩ B(v) and the convex hull ch(ui) of P ∩ B(ui) for
i = 1, 2. There are at most two edges of ch(v) that appear on neither ch(u1) nor ch(u2). We
call such an edge a bridge of ch(v) with respect to ch(u1) and ch(u2), or simply a bridge of
ch(v). Note that a bridge of ch(v) has one endpoint on ch(u1) and the other endpoint on
ch(u2). As we do in Section 2, for each node v of the level-3 trees, we store two bridges of ch(v)
and the length of each polygonal chain of ch(v) lying between the two bridges. Also, we store
the length of each polygonal chain connecting an endpoint of a bridge of ch(v) and an endpoint
of a bridge of ch(p(v)) for the parent p(v) of v along the boundary of ch(v) if the two endpoints
appear on ch(v). The following lemma can be proven in a way similar to Lemma 2.

Lemma 6. Given a node v of a level-3 tree and two vertices x, y of ch(v), we can compute the
length of the part of the boundary of ch(v) from x to y in clockwise order along the boundary of
ch(v) in O(log n) time.

3.2 Query Algorithm

In this subsection, we present an O(log2 n)-time query algorithm for computing the perimeter of
the convex hull of P ∩Q for a query {o1, o2, o3}-oriented triangle Q. Let T be the three-layer
grid-like range tree constructed with respect to (o1, o2, o3).

3.2.1 Computing Canonical Cells

We obtain O(log2 n) cells of T , called canonical cells of Q, such that the union of P ∩C coincides
with P ∩Q for all the canonical cells C as follows. We first search the level-1 tree of T along
the endpoints of the o1-projection of Q. Then we obtain O(log n) nodes such that the union
of the slabs corresponding to the nodes contains Q. Then we search the level-2 tree associated
with each such node along the endpoints of the o2-projection of Q. Then we obtain O(log2 n)
nodes in total such that the union of the {o1, o2}-parallelograms corresponding to the nodes
contains Q. We discard all {o1, o2}-parallelograms not intersecting Q. Some of the remaining
{o1, o2}-parallelograms are contained in Q, but the others intersect the boundary of Q in their
interiors. For the nodes corresponding to the {o1, o2}-parallelograms intersecting the boundary
of Q, we search their level-3 trees along the o3-projection of Q.

As a result, we obtain {o1, o2}-parallelograms from the level-2 trees and {o1, o2, o3}-polygons
from the level-3 trees of size O(log2 n) in total. See Figure 5. We call them the canonical cells of
Q and denote the set of them by V . Also, we use Vp and Vh to denote the subsets of V consisting

8



C(5, 1)

C(7, 3)

C(5, 2)

C(5, 3)

C(7, 4)

o3

o1 o2

jth y-coordinate

1 2 3 4 5 6 7

ith parallelogram

Figure 5: Canonical cells for a triangle. Four {o1, o2}-oriented parallelogram cells from level-2 trees and
26 {o1, o2, o3}-oriented polygon cells from level-3 trees.

of {o1, o2}-parallelograms from the level-2 trees and {o1, o2, o3}-polygons from the level-3 trees,
respectively. We can compute them in O(log2 n) time.

3.2.2 Computing Convex Hulls for Each Subset

We first compute the convex hull chp of the points contained in the cells of Vp and the convex
hull chh of the points contained in the cells of Vh. Then we merge them into the convex hull
of P ∩Q in Section 3.2.3. We can compute chp in O(log2 n) time due to Corollary 5. This is
because the cells are aligned with respect to two axes which are parallel to o1 and o2 each. Then
we obtain a binary search tree of height O(log n) representing chp. Thus in the following, we
focus on compute chh.

Without loss of generality, assume that Q lies above the x-axis. Let ` be the side of Q of
orientation o3. We assign a pair of indices to each cell of Vh, which consists of a row index and
a column index as follows. The cells of Vh come from O(log n) level-3 trees of the range tree.
This means that each cell of Vh is contained in the cell corresponding to the root of one of such
level-3 trees. These root cells are pairwise interior disjoint and intersect `. For each cell v of
Vh contained in the ith leftmost root cell along `, we assign i to it as the row index of v. The
bottom side of a cell of Vh is parallel to the x-axis. Consider the y-coordinates of all bottom
sides of the cells of Vh. By construction, there are O(log n) distinct y-coordinates although the
size of Vh is O(log2 n). We assign an index j to the cells of Vh whose bottom side has the jth
largest y-coordinates as their column indices. Then each cell of Vh has an index (i, j), where i is
its row index and j is its column index. Any two distinct cells of Vh have distinct indices. We let
C(i, j) be the cell of Vh with index (i, j).

Due to the indices we assigned, we can apply a procedure similar to Graham’s scan algorithm
for computing chh. We show how to compute the urc-hull of chh only. The other parts of the
boundary of chh can be computed analogously. To do this, we choose O(log n) cells as follows.
Note that a cell of Vh is a polygon with at most 6 vertices. A trapezoid cell C(i, j) of Vh is called
an extreme cell if there is no cell C(i′, j′) ∈ Vh such that i < i′ and j > j′, or i < i′ and j < j′.
Here, we need the disjunction. Otherwise, we cannot find some trapezoidal cell containing a
vertex of the urc-hull. See Figure 6. There are O(log n) extreme cells of Vh. In addition to these
extreme cells, we choose every cell of Vh which are not trapezoids, that is, convex t-gons with
t = 3, 5, 6. Note that there are O(log n) such cells because such cells are incident to the corners
of the cells of Vp. In this way, we choose O(log n) cells of Vh in total.

Lemma 7. A cell of Vh containing a vertex of the urc-hull of chh is an extreme cell of Vh if it
is a trapezoid.

Proof. Let v be a vertex of the urc-hull of chh and C = C(i, j) be the trapezoid cell of Vh

9



(c)(a) (b)

C(i, j)

Figure 6: (a) We choose C(i, j) if and only if at least one of the two gray regions contains no cell of
Vh. (b) It is not sufficient to choose the only cells such that no cell of Vh is contained in their lower gray
regions since the urc-hull might have its vertices in a cell whose lower gray regions contains a cell of Vh.
(c) Similarly, it is not sufficient to choose the only cells such that no cell of Vh is contained in their upper
gray regions.

containing v. Consider the region H lying to the right of the line containing the right side of C.
The lines containing the top and bottom sides of C subdivide H into three subregions. Since v is
a vertex of the urc-hull, the topmost or bottommost subregion contains no point of P ∩Q, that
is, there is no cell C(i′, j′) ∈ Vh such that i < i′ and j > j′, or i < i′ and j < j′. Therefore, C is
an extreme cell.

By Lemma 7, the convex hull chh coincides with the convex hull of the convex hulls of points
in the cells chosen by the previous procedure. For each column j, we consider the cells with
column index j chosen by the previous procedure one by one in increasing order with respect
to their row indices, and compute the convex hull of points contained in those cells. Then we
consider the column indices one by one in increasing order, and compute the convex hull of the
convex hulls for column indices. This takes O(log2 n) time in total as we do in Section 2.2.

In this way, we can obtain a binary search tree of height O(log n) representing the urc-hull
of chh. The urc-hull consists of O(log n) polygonal curves that are parts of the boundaries of
the convex hulls stored in cells of Vh and O(log n) bridges connecting them. Therefore, we can
compute the lengths of the polygonal curves in O(log2 n) time in total.

3.2.3 Merging the Two Convex Hulls

The convex hull ch of P ∩Q coincides with the convex hull of chp and chh. To compute it, we
need the following lemma.

Lemma 8. The boundary of chp intersects the boundary of chh at most O(log n) times. We
can compute the intersection points in O(log2 n) time in total.

Proof. Consider two edges, one from chp and one from chh, intersecting each other. One of
them is a bridge with endpoints lying on two distinct cells of V . This is because the cells of V are
pairwise interior disjoint. Moreover, each bridge in chp (or chh) intersects the boundary of chh

(or chp) at most twice since chh and chp are convex. Since there are O(log n) bridges in chp

and chh, there are O(log n) intersection points between the boundary of chp and the boundary
of chh.

To compute the intersection points, we compute the intersection points between each bridge
of a convex hull and the boundary of the other convex hull. For each bridge, we can compute the
two intersection points in O(log n) time since we have a binary search tree for each convex hull
of height O(log n) [15]. Therefore, we can compute all intersection points in O(log2 n) time.

We first compute the intersection points of the boundaries of chp and chh in O(log2 n) time
by Lemma 8, and then sort them along the boundary of their convex hull in clockwise order

10



in O(log n log log n) time. Note that this order is the same as the clockwise order along the
boundary of chp (and chh). Then we locate each intersection point on the boundary of each
convex hull with respect to the bridges in O(log n) time in total.

There are O(log n) edges of the convex hull ch of chp and chh that do not appear on the
boundaries of chp and chh. To distinguish them with the bridges on the boundaries of chp and
chh, we call the edges on the boundary of ch appearing neither chp nor chh the hull-bridges.
Also we call the bridges on chp and chh with endpoints in two distinct cells of V the node-bridges.

The boundary of the convex hull of chp and chh consists of O(log n) hull-bridges and O(log n)
polygonal curves each of which connects two hull-bridges along chp or chh. We compute all
hull-bridges in O(log2 n) time.

Lemma 9. All hull-bridges can be computed in O(log2 n) time in total.

Proof. Let 〈p1, . . . , pm〉 be the sequence of the intersection points of the boundaries of chp and
chh sorted along the boundary of the convex hull of the intersection points with m = O(log n).
For an index i with 1 ≤ i < m, We use chp[i] and chh[i] to denote the parts of the boundaries
of chp and chh from pi to pi+1, respectively, in clockwise order along their boundaries.

Every hull-bridge is an outer tangent of chp[i] and chh[i+ 1] or an outer tangent of chh[i]
and chp[i+ 1] for an index 1 ≤ i < m. Therefore, it suffices to compute all outer tangents of
chp[i] and chh[i + 1] (and chh[i] and chp[i]). Note that some of the outer tangents are not
hull-bridges, but we can determine whether an outer tangent is a hull-bridge or not in constant
time by considering the edges of chp and chh incident to the endpoints of the outer tangent.

We can compute the outer tangents of chp[i] and chh[i + 1] in O(log n) time using the
algorithm in [15] since we have a binary search tree of height O(log n) representing chp (and
chh). Therefore, we can compute all hull-bridges in O(log2 n) time.

As a result, we obtain a binary search tree of height O(log n) representing the convex hull
ch of P ∩Q. We can compute the length of each polygonal curve connecting two hull-bridges
in O(log n) time by Lemma 2 and the fact that there are O(log n) node-bridges lying on ch.
Therefore, we have the following theorem.

Theorem 10. Given a set P of n points and a set O of k orientations in the plane, we can
construct a data structure with O(nk3 log2 n) space in O(nk3 log2 n) time that allows us to compute
the perimeter of the convex hull of P ∩Q in O(log2 n) time for any query O-oriented triangle Q.

4 O-oriented Polygon Queries for Convex Hulls

The data structure in Section 3 can be used for more general queries. We are given a set P of n
points in the plane and a set O of k orientations. Let Q be a query O-oriented convex s-gon.
Since Q is convex, s is at most 2k. Assume that we are given the three-layer grid-like range tree
on P with respect to the set O including the axis-parallel orientations. We want to compute the
perimeter of the convex hull of P ∩Q in O(s log2 n) time.

We draw vertical line segments through the vertices of Q to subdivide Q into at most 2k
trapezoids. We subdivide each trapezoid further using the horizontal lines passing through
its vertices into at most two triangles and one parallelogram. The edges of a triangle and a
parallelogram, say 4, have orientations in the set O including the axis-parallel orientations.
Thus, we can compute the convex hull of 4∩P in O(log2 n) time and represent it using a binary
search tree of height O(log n). By Lemma 3, we can compute the convex hull of the points
contained in each trapezoid in O(s log2 n) time in total and represent them using balanced binary
search trees of height O(log n).

11



Let A1, . . . , At be the trapezoids from the leftmost one to the rightmost one for t ≤ k. We
consider the trapezoids one by one from A1 to At. Assume that we have just handled the
trapezoid Ai and we want to handle Ai+1. Assume further that we already have the convex hull
chi of the points contained in Aj for all j ≤ i. Since the convex hull of the points in Ai+1 is
disjoint from chi, we can compute chi+1 in O(log n) time using Lemma 3. In this way, we can
compute the convex hull of P ∩Q in O(s log2 n) time in total. Moreover, we can compute its
perimeter in the same time as we did before. If s is a constant as for the case of O-oriented
triangle queries, it takes only O(log2 n) time.

Theorem 11. Given a set P of n points in the plane and a set O of k orientations, we can
construct a data structure with O(nk3 log2 n) space in O(nk3 log2 n) time that allows us to compute
the perimeter of the convex hull of P ∩Q in O(s log2 n) time for any O-oriented convex s-gon.

As mentioned in Introduction, our data structure can be used to improve the algorithm and
space requirement by Abrahamsen et al. [1]. They considered the following problem: Given a
set P of n points in the plane, partition P into two subsets P1 and P2 such that the sum of the
perimeters of ch(P1) and ch(P2) is minimized, where ch(A) is the convex hull of a point set A.
They gave an O(n log4 n)-time algorithm for this problem using O(n log3 n) space. Using our
data structure, we can improve their running time to O(n log2 n) and their space complexity to
O(n log2 n).

Corollary 12. Given a set P of n points in the plane, we can compute a minimum perimeter-sum
bipartition of P in O(n log2 n) time using O(n log2 n) space.

4.1 O-oriented Polygon Queries for the Areas of Convex Hulls

We can modify our data structure to compute the area of the convex hull of P ∩ Q for any
O-oriented convex polygon query Q without increasing the time and space complexities.

The modification of the data structure is on the information stored in each node of the
grid-like range trees of P . Let v be a node of a level-3 tree of a grid-like range tree T . Without
loss of generality, we assume that the axis of the level-3 trees of T is parallel to the x-axis. Let
u1 and u2 be the two children of v such that B(u1) lies above B(u2). We use ch(v) to denote
the convex hull of the points contained in B(v).

We store its two bridges and the area of the convex hull of each polygonal chain of ch(v)
lying between two bridges. In addition, we store the area of the convex hull of each polygonal
chain connecting an endpoint e of a bridge of ch(v) and an endpoint e′ of a bridge of ch(p(v))
for the parent node p(v) of v with e, e′ ∈ B(v) along the boundary of ch(v). We do this for every
endpoint of the bridges of ch(v) and ch(p(v)) that are contained in B(v). Therefore, we have
the following operation.

Lemma 13. Given a node v of a level-3 tree and two vertices x, y of ch(v), we can compute the
area of the convex hull of the part of the boundary of ch(v) from x to y in clockwise order along
the boundary of ch(v) in O(log n) time.

Proof. The proof is similar to the proof of Lemma 2. We obtain two paths such that the
boundary of ch(v) is decomposed into O(log n) pieces each of which corresponds to a node in
the two paths in O(log n) time.

In the proof of Lemma 2, we simply add the lengths of all such pieces, each in O(log n) time,
since the length of each piece is stored in a node of the paths. Instead, we add the areas of the
convex hulls of all such pieces. Then we compute the area of the convex hull of the endpoints of
all such pieces. Since all such convex hulls are pairwise interior disjoint, the total sum is the area

12



we want to compute. Therefore, we can compute the area of the convex hull of the part of the
boundary of ch(v) from x to y in O(log n) time.

For an O-oriented convex s-gon query Q, we can obtain O(s log n) pieces of the convex hull
of P ∩Q each of which is a straight line, or a polygonal curve lying on the boundary of ch(v) for
some node v of the grid-like range trees in O(s log2 n) time due to Section 4. These pieces are
sorted along the boundary of ch. By construction, the convex hulls of all such pieces and the
convex hull of all straight lines contain the convex hull of P ∩Q and they are pairwise interior
disjoint. The area of the convex hull of P ∩ Q is the sum of the areas of these convex hulls.
Therefore, we can compute the area of the convex hull of P ∩Q in O(s log2 n) time.

Theorem 14. Given a set P of n points and a set O of k orientations in the plane, we can
construct a data structure with O(nk3 log2 n) space in O(nk3 log2 n) time that allows us to compute
the area of the convex hull of P ∩Q in O(s log2 n) time for any O-oriented convex s-gon.

4.2 O-oriented Polygon Queries for Reporting Convex Hulls

We can use our data structure to report the edges of the convex hull of P ∩Q for any O-oriented
convex polygon query Q without increasing the space and time complexities, except an additional
O(h) term in the query time for reporting the convex hull with h edges, due to the following
lemma.

Lemma 15. Given a node v of a level-3 tree and two vertices x, y of ch(v), we can report all
edges of the convex hull of the part of the boundary of ch(v) from x to y in clockwise order along
its boundary in O(log n+ h(v)) time, where h(v) is the number of the edges reported.

Proof. The proof is similar to the proof of Lemma 2. We obtain two paths such that the
boundary of ch(v) is decomposed into O(log n) pieces each of which corresponds to a node in
the two paths in O(log n) time. For each such node v, we can report all edges of a part of the
boundary of ch(v) in order once we have the endpoints of the part in time linear to the output
size by traversing the subtree rooted at v in a DFS order. Therefore, we can report all edges of
ch(v) from x to y in O(log n+ h(v)) time in total.

For an O-oriented convex s-gon query Q, we can decompose the boundary of ch(v) into
O(log n) pieces each of which is a straight line, or a polygonal curve lying on the boundary of
ch(v) for some node v of the grid-like range trees in O(log2 n) time due to Section 4. Using
Lemma 15, we report the edges of the convex hull of P ∩Q in O(s log2 n+ h) time, where h is
the number of the edges of the convex hull.

Theorem 16. Given a set P of n points and a set O of k orientations in the plane, we can
construct a data structure with O(nk3 log2 n) space in O(nk3 log2 n) time that allows us to report
all edges of the convex hull of P ∩Q in O(s log2 n+ h) time for any O-oriented convex s-gon,
where h is the number of edges of the convex hull.

References

[1] Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi.
Minimum perimeter-sum partitions in the plane. In Proceedings of the 33rd International
Symposium on Computational Geometry (SoCG 2017), pages 4:1–4:15, 2017.

13



[2] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In
Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, editors, Advances in Discrete
and Compputational Geometry, volume 223 of Contemporary Mathematics, pages 1–56.
American Mathematical Society Press, 1999.

[3] Pankaj K. Agarwal, Haim Kaplan, Natan Rubin, and Micha Sharir. Kinetic Voronoi diagrams
and Delaunay triangulations under polygonal distance functions. Discrete & Computational
Geometry, 54(4):871–904, 2015.

[4] Pankaj K. Agarwal and Jirí Matoušek. Ray shooting and parametric search. SIAM Journal
on Computing, 22(4):794–806, 1993.

[5] Peter Brass, Christian Knauer, Chan-Su Shin, Michiel Schmid, and Ivo Vigan. Range-
aggregate queries for geometric extent problems. In Proceedings of the 19th Computing:
Australasian Theory Symposium (CATS 2013), volume 141, pages 3–10, 2013.

[6] Bernard Chazelle. Filtering search: A new approach to query answering. SIAM Journal on
Computing, 15(3):703–724, 1986.

[7] Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM, 37(2):200–212, 1990.

[8] Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite vc-
dimension. Discrete & Computational Geometry, 4(5):467–489, 1989.

[9] Zhenming Chen, Evanthia Papadopoulou, and Jinhui Xu. Robustness of k-gon Voronoi
diagram construction. Information Processing Letters, 97(4):138–145, 2006.

[10] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, 2008.

[11] Mark de Berg, Dan Halperin, Mark Overmars, Jack Snoeyink, and Marc van Kreveld.
Efficient ray shooting and hidden surface removal. Algorithmica, 12(1):30–53, 1994.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Communications of the ACM, 51:107–113, 2008.

[13] Herbert Edelsbrunner and Emo Welzl. Halfplanar range search in linear space and O(n0.695)
query time. Information Processing Letters, 23:289–293, 1986.

[14] Nadeem Modiu, Jatin Agarwal, and Kishore Kothapalli. Planar convex hull range query
and related problems. In Proceedings of the 25th Canadian Conference on Computational
Geometry (CCCG 2013), pages 307–310, 2013.

[15] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane.
Journal of Computer and System Sciences, 23(2):166–204, 1981.

[16] Diane L. Souvaine and Iliana Bjorling-Sachs. The contour problem for restricted-orientation
polygons. Proceedings of the IEEE, 80(9):1449–1470, 1992.

[17] Peter Widmayer, Ying-Fung Wu, and Chak-Kuen Wong. On some distance problems in
fixed orientations. SIAM Journal on Computing, 16(4):728–746, 1987.

[18] Dan E. Willard. Polygon retrieval. SIAM Journal on Computing, 11(1):149–165, 1982.

14


	1 Introduction
	2 Axis-Parallel Rectangle Queries for Convex Hulls
	2.1 Data Structure
	2.2 Query Algorithm

	3 O-oriented Triangle Queries for Convex Hulls
	3.1 Data Structure
	3.2 Query Algorithm
	3.2.1 Computing Canonical Cells
	3.2.2 Computing Convex Hulls for Each Subset
	3.2.3 Merging the Two Convex Hulls


	4 O-oriented Polygon Queries for Convex Hulls
	4.1 O-oriented Polygon Queries for the Areas of Convex Hulls
	4.2 O-oriented Polygon Queries for Reporting Convex Hulls


