Skip to main content

Computation and Growth of Road Network Dimensions

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1679 Accesses

Abstract

There is a plethora of route planning techniques which work remarkably well on real-world road networks. To explain their good performance, theoretical bounds in dependency of road network parameters as the highway dimension h or the skeleton dimension k were investigated. For example, for the hub label technique, query times in the order of \(\mathcal {O}(p \log D)\) and a space consumption of \(\mathcal {O}(np \log D)\) were proven for both \(p=h\) and \(p=k\), with D denoting the graph diameter and n the number of nodes in the network. But these bounds are only meaningful when the dimension values h or k are known. While it was conjectured that h and k grow polylogarithmically in n, their true nature was not thoroughly investigated before – primarily because of a lack of efficient algorithms for their computation. For the highway dimension, this is especially challenging as it is NP-hard to decide whether a network has highway dimension at most h. We describe the first efficient algorithms to lower bound the highway dimension and to compute the skeleton dimension exactly, even in huge networks. This allows us to formulate new conjectures about their growth behavior. Somewhat surprisingly, our results imply that h and k scale very differently. While k turns out to be a constant, we expect h to grow superpolylogarithmically in n. These observations have implications for the future design and analysis of route planning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 782–793. SIAM (2010)

    Chapter  Google Scholar 

  4. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science 316(5824), 566 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_9

    Chapter  Google Scholar 

  6. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The pace 2017 parameterized algorithms and computational experiments challenge: the second iteration. In: Proceedings of the 12th International Symposium on Parameterized and Exact Computation (IPEC), Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, pp. 30:1–30:12. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  7. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: hardware-accelerated shortest path trees. In: Proceedings of the 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pp. 921–931. IEEE (2011)

    Google Scholar 

  8. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Cham (2014)

    Google Scholar 

  9. Feldmann, A.E.: Fixed parameter approximations for k-center problems in low highway dimension graphs. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 588–600. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  10. Feldmann, A.E., Fung, W.S., Könemann, J., Post, I.: A \((1+{\varepsilon })\)-embedding of low highway dimension graphs into bounded treewidth graphs. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 469–480. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_38

    Chapter  Google Scholar 

  11. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  12. Kosowski, A., Viennot, L.: Beyond highway dimension: small distance labels using tree skeletons. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1462–1478. SIAM (2017)

    Google Scholar 

  13. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA), LIPIcs, vol. 87, pp. 68:1–68:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Blum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blum, J., Storandt, S. (2018). Computation and Growth of Road Network Dimensions. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics