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NONBIPARTITE DULMAGE-MENDELSOHN DECOMPOSITION

FOR BERGE DUALITY

NANAO KITA

Abstract. The Dulmage-Mendelsohn decomposition is a classical canonical
decomposition in matching theory applicable for bipartite graphs, and is fa-
mous not only for its application in the field of matrix computation, but also
for providing a prototypal structure in matroidal optimization theory. The
Dulmage-Mendelsohn decomposition is stated and proved using the two color
classes, and therefore generalizing this decomposition for nonbipartite graphs

has been a difficult task. In this paper, we obtain a new canonical decompo-
sition that is a generalization of the Dulmage-Mendelsohn decomposition for
arbitrary graphs, using a recently introduced tool in matching theory, the basil-
ica decomposition. Our result enables us to understand all known canonical
decompositions in a unified way. Furthermore, we apply our result to derive
a new theorem regarding barriers. The duality theorem for the maximum
matching problem is the celebrated Berge formula, in which dual optimizers
are known as barriers. Several results regarding maximal barriers have been
derived by known canonical decompositions, however no characterization has
been known for general graphs. In this paper, we provide a characterization of
the family of maximal barriers in general graphs, in which the known results
are developed and unified.

1. Introduction

We establish the Dulmage-Mendelsohn decomposition for general graphs. The
Dulmage-Mendelsohn decomposition [2–4], or the DM decomposition in short, is
a classical canonical decomposition in matching theory [15] applicable for bipar-
tite graphs. This decompositions is famous for its application for combinatorial
matrix theory, especially, for providing an efficient solution for a system of linear
equations [1, 4], and is also important in matroidal optimization theory.

Canonical decompositions of a graph are fundamental tools in matching the-
ory [15]. A canonical decomposition partitions a given graph in a way uniquely
determined for the graph, and describes the structure of maximum matchings using
this partition. The classical canonical decompositions are the Gallai-Edmonds [5,6]
and Kotzig-Lovász decompositions [11–13], in addition to the DM decomposition.
The DM and Kotzig-Lovász decompositions are applicable for bipartite graphs and
factor-connected graphs, respectively. The Gallai-Edmonds decomposition parti-
tions an arbitrary graph into three parts, that is, the so-called D(G), A(G), and
C(G) parts. Comparably recently, a new canonical decomposition was proposed:
the basilica decomposition [7, 8]. This decomposition is applicable for arbitrary
graphs and contains a generalization of the Kotzig-Lovász decomposition and a re-
finement the Gallai-Edmonds decomposition. (The C(G) part can be decomposed
nontrivially.)

In this paper, using the basilica decomposition, we establish an analogue of the
DM decomposition for general graphs. Our result accordingly provides a paradigm
that enables us to handle any graph and understand the known canonical decom-
positions in a unified way. In the theory of original DM decomposition, the concept
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of the DM components of a bipartite graph is first defined, and then it is proved
that these components form a poset with respect to a certain binary relation.

This theory is heavily depend on the two color classes of a bipartite graph and
cannot be easily generalized for nonbipartite graphs. In our generalization, we first
define a generalization of the DM components using the basilica decomposition. To
capture the structure formed by these components in nonbipartite graphs, we intro-
duce a little more complexed concept: posets with a transitive forbidden relation.
We then prove that the generalized DM components form a poset with a transitive
forbidden relation for certain binary relations.

Using this generalized DM decomposition, we derive a characterization of the
family of maximal barriers in general graphs. The Berge formula is a combinatorial
min-max theorem, in which maximum matchings are the optimizers of one hand,
and the optimizers of the other hand are known as barriers [15]. That is, barriers
are the dual optimizers of the maximum matchings problem. Barriers are heav-
ily employed as a tool for studying matchings. However, not so much is known
about barriers themselves [15]. Aside from several observations that are derived
rather easily from the Berge formula, several substantial results are known about
(inclusion-wise) maximal barriers, which are provided by canonical decompositions.

Our result for maximal barriers shows a reasonable consistency regarding our
generalization of the DM decomposition, considering the relationship between each
known canonical decomposition and maximal barriers. Each known canonical de-
composition can be used to state the structure of maximal barriers. The original
DM decomposition provides a characterization of the family of maximal barriers in
bipartite graphs in terms of ideals in the poset; minimum vertex covers in bipar-
tite graphs are equivalent to maximal barriers. The Gallai-Edmonds decomposition
derives a characterization of the intersection of all maximal barriers (that is, the
A(G) part) [15]; this characterization is known as the Gallai-Edmonds description.
The Kotzig-Lovász decomposition is used for characterizing the family of maximal
barriers in factor-connected graphs [15]; this result is known as Lovász’s canonical

partition theorem [14, 15]. The basilica decomposition provides the structure of a
given maximal barrier in general graphs, which contains a common generalization of
the Gallai-Edmonds description and Lovász’s canonical partition theorem. Hence,
a generalization of the DM decomposition would be reasonable if it can characterize
the family of maximal barriers, and our generalization attains this in a way ana-
logical to the classical DM decomposition, that is, in terms of ideals in the poset
with a transitive forbidden relation.

Our results may imply a new possibility in matroidal optimization theory. In
submodular function theory, the bipartite maximum matching problem is an im-
portant exemplary problem, and the DM decomposition therefore has a special role
in this theory. Our nonbipartite DM decomposition may be a clue to a new phase
of submodular function theory that can be brought in by capturing these concepts.

The remainder of this paper is organized as follows: In Section 2, we explain
the basic definitions. In Section 3, we present the preliminary results from the
basilica decomposition theory. In Section 4, we introduce the new concept of posets
with a transitive forbidden relation. In Section 5, we provide our main result, the
nonbipartie DM decomposition. In Section 6, we present preliminary definitions and
results regarding barriers. We then prove in Section 7 that our generalization of
the DM decomposition can be used to characterize the family of maximal barriers.
In Section 8, we show how our result contains the original DM decomposition for
bipartite graphs. In Section 9, we remark that our nonbipartite DM decomposition
can be computed in polynomial time.
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2. Notation

2.1. General Definitions. For basic notation for sets, graphs, and algorithms, we
mostly follow Schrijver [16]. In this section, we explain exceptions or nonstandard
definitions. In Section 2, unless otherwise stated, let G be a graph. The vertex set
and the edge set of G are denoted by V (G) and E(G), respectively. We treat paths
and circuits as graphs. For a path P and vertices x and y from P , xPy denotes the
subpath of P between x and y. The singleton set {x} is often denoted by just x.
We often treat a graph as the set of its vertices.

2.2. Graph Operations. In the remainder of this section, let X ⊆ V (G). The
subgraph of G induced by X is denoted by G[X ]. The graph G[V (G)\X ] is denoted
by G − X . The contraction of G by X is denoted by G/X . Let F ⊆ E(G). The
graph obtained by deleting F from G without removing vertices is denoted by G−F .
Let H be a subgraph of G. The graph obtained by adding F to H is denoted by
H + F . Regarding these operations, we identify vertices, edges, subgraphs of the
newly created graph with the naturally corresponding items of old graphs.

2.3. Functions on Graphs. A neighbor of X is a vertex from V (G) \X that is
adjacent to some vertex from X . The neighbor set of X is denoted by NG(X). Let
Y ⊆ V (G). The set of edges joining X and Y is denoted by EG[X,Y ]. The set
EG[X,V (G) \X ] is denoted by δG(X).

2.4. Matchings. A set M ⊆ E(G) is a matching if |δG(v)∩M | ≤ 1 holds for each
v ∈ V (G). For a matching M , we say that M covers a vertex v if |δG(v) ∩M | = 1;
otherwise, we say that M exposes v. A matching is maximum if it consists of the
maximum number of edges. A graph can possess an exponentially large number of
matchings. A matching is perfect if it covers every vertex. A graph is factorizable
if it has a perfect matchings. A graph is factor-critical if, for each vertex v, G− v
is factorizable. A graph with only one vertex is defined to be factor-critical. The
number of edges in a maximum matching is denoted by ν(G). The number of
vertices exposed by a maximum matching is denoted by def(G); that is, def(G) :=
|V (G)| − 2ν(G).

2.5. Alternating Paths and Circuits. Let M ⊆ E(G). A circuit or path is said
to be M -alternating if edges in M and not in M appear alternately. The precise
definition is the following: A circuit C of G is M -alternating if E(C) ∩ M is a
perfect matching of C. We define the three types of M -alternating paths. Let
P be a path with ends s and t. We say that P is M -forwarding from s to t if
M ∩E(P ) is a matching of P that covers every vertex except for t. We say that P
is M -saturated between s and t if M ∩ E(P ) is a perfect matching of P . We say
that P is M -exposed between s and t if M ∩ E(P ) is a matching of P that covers
every vertex except for s and t. Any path with exactly one vertex x is defined to
be an M -forwarding path from x to x, and is never treated as an M -exposed path.
Any M -forwarding path has an even number of edges, which can be zero, whereas
any M -saturated or -exposed path has an odd number of edges.

A path P is an ear relative to X if the internal vertices of P are disjoint from X ,
whereas the ends are in X . A circuit C is an ear relative to X if exactly one vertex
of C is in X ; for simplicity, we call the vertex in X ∩ V (C) the end of the ear C.
We call an ear P relative to X an M -ear if P − X is empty or an M -saturated
path, and δP (X) ∩M = ∅.

2.6. Berge Formula and Barriers. We now explain the Berge Formula and the
definition of barriers. An odd component (resp. even component) of a graph is a
connected component with an odd (resp. even) number of vertices. The number
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of odd components of G − X is denoted by qG(X). The set of vertices from odd
components (resp. even components) of G−X is denoted by DX (resp. CX).

Theorem 2.1 (Berge Formula [15]). For a graph G, def(G) is equal to the maxi-
mum value of qG(X)− |X |, where X is taken over all subsets of V (G).

The set of vertices that attains the maximum value in this relation is called a
barrier. That is, a set of vertices X is a barrier if def(G) = qG(X)− |X |.

2.7. Gallai-Edmonds Family and Structure Theorem. The set of vertices
that can be exposed by some maximum matchings is denoted by D(G). The neigh-
bor set of D(G) is denoted by A(G), and the set V (G) \D(G) \ A(G) is denoted
by C(G). The following statement about D(G), A(G), and C(G) is the celebrated
Gallai-Edmonds structure theorem [5, 6, 15].

Theorem 2.2 (Gallai-Edmonds Structure Theorem). For any graph G,

(i) A(G) is a barrier for which DA(G) = D(G) and CA(G) = C(G);
(ii) each odd component of G−A(G) is factor-critical; and,
(iii) every edge inEG[A(G), D(G)] is allowed, whereas no edge in EG[A(G), A(G)∪

C(G)] is allowed.

2.8. Factor-Components. An edge is allowed if it is contained in some maximum
matching. Two vertices are factor-connected if they are connected by a path whose
edges are allowed. A subgraph is factor-connected if any two vertices are factor-
connected. A maximal factor-connected subgraph is called a factor-connected com-

ponent or factor-component. A graph consists of its factor-components and edges
joining them that are not allowed. The set of factor-components of G is denoted
by G(G).

A factor-component C is inconsistent if V (C)∩D(G) 6= ∅. Otherwise, C is said to
be consistent. We denote the sets of consistent and inconsistent factor-components
of G by G+(G) and G−(G), respectively. The next property is easily confirmed
from the Gallai-Edmonds structure theorem.

Fact 2.3. A subgraph C of G is an inconsistent factor-component if and only if
C is a connected component of G[D(G) ∪A(G)]. Any consistent factor-component
has the vertex set contained in C(G).

That is, the structure of inconsistent factor-components are rather trivial under
the Gallai-Edmonds structure theorem.

3. Basilica Decomposition of Graphs

3.1. Central Concepts. In Section 3, we introduce the basilica decomposition of
graphs [7, 8]. The theory of basilica decomposition is made up of the three central
concepts:

(i) a canonical partial order between factor-components (Theorem 3.2),
(ii) the general Kotzig-Lovász decomposition (Theorem 3.4), and
(iii) an interrelationship between the two (Theorem 3.5).

In Section 3.1, we explain these three concepts and give the definition of the basilica
decomposition. Every statement in the following are from Kita [7,8] 1 In Section 3,
let G be a graph unless otherwise stated.

1The essential part of the structure described by the basilica decomposition lies in the factoriz-
able graph G[C(G)]. Therefore, statements for factorizable graphs [7, 8] can be straightforwardly
generalized for arbitrary graphs under the Gallai-Edmonds structure theorem.
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Definition 3.1. We call a set X ⊆ V (G) separating if it is the disjoint union of
vertex sets of some factor-components. For G1, G2 ∈ G(G), we say G1 ⊳G2 if there
exists a separating set X ⊆ V (G) with V (G1) ∪ V (G2) ⊆ X such that G[X ]/G1 is
a factor-critical graph.

Theorem 3.2. For a graph G, the binary relation ⊳ is a partial order over G(G).

Definition 3.3. For u, v ∈ V (G) \D(G), we say u ∼G v if u and v are identical or
if u and v are factor-connected and satisfy def(G− u− v) > def(G).

Theorem 3.4. For a graph G, the binary relation ∼G is an equivalence relation.

We denote as P(G) the family of equivalence classes determined by ∼G. This
family is known as the general Kotzig-Lovász decomposition or just the Kotzig-

Lovász decomposition of G. From the definition of ∼G, for each H ∈ G(G), the
family {S ∈ P(G) : S ⊆ V (H)} forms a partition of V (H) \D(G). We denote this
family by PG(H).

Let H ∈ G(G). The sets of strict and nonstrict upper bounds of H are denoted
by UG(H) and U∗

G(H), respectively. The sets of vertices
⋃
{V (I) : I ∈ UG(H)} and⋃

{V (I) : I ∈ U∗
G(H)} are denoted by UG(H) and U∗

G(H), respectively.

Theorem 3.5. Let G be a graph, and let H ∈ G(G). Then, for each connected
component K of G[UG(H)], there exists S ∈ PG(H) such that NG(K)∩V (H) ⊆ S.

Under Theorem 3.5, for S ∈ PG(H), we denote by UG(S) the set of factor-
components that are contained in a connected component K of G[UG(H)] with
NG(K) ∩ V (H) ⊆ S. The set

⋃
{V (I) : I ∈ UG(H)} is denoted by UG(S). We

denote UG(H) \ S \ UG(S) by
⊤UG(S).

Theorem 3.5 integrates the two structures given by Theorems 3.2 and 3.4 into
a structure of graphs that is reminiscent of an architectural building. We call this
integrated structure the basilica decomposition of a graph.

3.2. Remark on Inconsistent Factor-Components. Inconsistent factor-components
in a graph have a trivial structure regarding the basilica decomposition. The next
statement is easily confirmed from Fact 2.3 and the Gallai-Edmonds structure the-
orem.

Fact 3.6. Let G be a graph. Any inconsistent component is minimal in the poset
(G(G), ⊳). For anyH ∈ G−(G), if V (H)∩A(G) 6= ∅, then PG(H) = {V (H)∩A(G)};
otherwise, PG(H) = ∅.

For simplicity, even for H ∈ G−(G) with V (H) ∩ A(G) = ∅, we treat as if
V (H) ∩A(G) is a member of P(G). That is, we let PG(H) = {V (H) ∩A(G)} and
⊤UG(V (H) ∩ A(G)) = ⊤UG(∅) = V (H) ∩D(G) = V (H).

Under Fact 3.6, the substantial information provided by the basilica decomposi-
tion lies in the consistent factor-components.

3.3. Additional Properties. In this section, we present some properties of the
basilica decomposition that are used in later sections.

Lemma 3.7 (Kita [9]). Let G be a graph, and let M be a maximum matching of
G. Let H ∈ G+(G), S ∈ PG(H), and s ∈ S.

(i) For any t ∈ S, there is an M -forwarding path from s to t, whose vertices are
contained in S ∪ ⊤UG(S); however, there is no M -saturated path between
s and t.

(ii) For any t ∈ ⊤UG(S), there exists an M -saturated path between s and t
whose vertices are contained in S ∪ ⊤UG(S).
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(iii) For any t ∈ UG(S), there is an M -forwarding path from t to s, whereas
there is no M -forwarding path from s to t or M -saturated path between s
and t.

The first part of the next lemma is provided in Kita [10], and the second part
can be easily proved from Lemma 3.7.

Lemma 3.8. Let G be a graph, and let M be a maximum matching of G. Let
S ∈ P(G). If there is an M -ear relative to S ∪ ⊤UG(S) that has internal vertices,
then the ends of this ear are contained in S.

4. Poset with Transitive Forbidden Relation

We now introduce the new concept of posets with a transitive forbidden relation,
which serves as a language to describe the nonbipartite DM decomposition.

Definition 4.1. Let X be a set, and let � be a partial order over X . Let ⌣ be a
binary relation over X such that,

(i) for each x, y, z ∈ X , if x � y and y ⌣ z hold, then x ⌣ z holds (transitiv-
ity);

(ii) for each x ∈ X , x ⌣ x does not hold (nonreflexivity); and,
(iii) for each x, y ∈ X , if x ⌣ y holds, then y ⌣ x also holds (symmetry).

We call this poset endowed with this additional binary relation a poset with a

transitive forbidden relation or TFR poset in short, and denote this by (X,�,⌣).
We call a pair of two elements x and y with x ⌣ y forbidden.

Let (X,�,⌣) be a TFR poset. For two elements x, y ∈ X with x ⌣ y, we say

that x
⋆
⌣ y if, there is no z ∈ X \ {x, y} with x � z and z ⌣ y. We call such a

forbidden pair of x and y immediate. A TFR poset can be visualized in a similar
way to an ordinary posets. We represent � just in the same way as the Hasse
diagrams and depict ⌣ by indicating every immediate forbidden pairs.

Definition 4.2. Let P be a TFR poset (X,�,⌣). A lower or upper ideal Y of
P is legitimate if no elements x, y ∈ Y satisfy x ⌣ y. Otherwise, we say that Y is
illegitimate. Let Y be a consistent lower or upper ideal, and let Z be the subset of
X \ Y such that, for each x ∈ Z, there exists y ∈ Y with x ⌣ y. We say that Y is
spanning if Y ∪ Z = X .

5. Dulmage-Mendelsohn Decomposition for General Graphs

We now provide our new results of the DM decomposition for general graphs.
In this section, unless otherwise stated, let G be a graph.

Definition 5.1. A Dulmage-Mendelsohn component, or a DM component in short,
is a subgraph of the form G[S ∪ ⊤UG(S)], where S ∈ P(G), endowed with S as an
attribute known as the base. For a DM component C, the base of C is denoted by
π(C). Conversely, for S ∈ P(G), K(S) denotes the DM components whose base is
S. We denote by D(G) the set of DM components of G.

Hence, distinct DM components can be equivalent as a subgraph of G. A base
S ∈ P(G) uniquely determines a DM component.

Definition 5.2. A DM component C is said to be inconsistent if π(C) ∈ PG(H)
for some H ∈ G−(G); otherwise, C is said to be consistent. The sets of consistent
and inconsistent DM components are denoted by D+(G) and D−(G), respectively.

Under Fact 3.6, any H ∈ D−(G) is equal to an inconsistent factor-component as
a subgraph of G, and π(H) = V (H) ∩A(G) and V (H) \ π(H) = V (H) ∩D(G).
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Definition 5.3. We define binary relations �◦ and � over D(G) as follows: for
D1, D2 ∈ D(G), we let D1 �◦ D2 if D1 = D2 or if NG(

⊤UG(S1)) ∩ S2 6= ∅; we let
D1 � D2 if there exist C1, . . . , Ck ∈ D(G), where k ≥ 1, such that π(C1) = π(D1),
π(Ck) = π(D2), and Ci �

◦ Ci+1 for each i ∈ {1, . . . , k} \ {k}.

Definition 5.4. We define binary relations ⌣◦ and ⌣ over D(G) as follows: for
D1, D2 ∈ D(G), we let D1 ⌣◦ D2 if π(D2) ⊆ V (D1)\π(D1) holds; we let D1 ⌣ D2

if there exists D′ ∈ D(G) with D1 � D′ and D′ ⌣◦ D2.

In the following, we prove that (D(G),�,⌣) is a TFR poset, which gives a
generalization of the DM decomposition. The next lemma is easily observed from
Facts 2.3 and 3.6.

Lemma 5.5. If C is an inconsistent DM component of a graph G, then there is
no C′ ∈ D(G) \ {C} with C � C′ or C ⌣ C′.

We first prove that � is a partial order over D(G). We provide Lemmas 5.6 and
5.7 and thus prove Theorem 5.9.

Lemma 5.6. Let G be a graph, let M be a maximum matching of G, and let
D1, . . . , Dk ∈ D(G), where k ≥ 1, be DM components with D1 �◦ · · · �◦ Dk no two
of which share vertices. Then, for any s ∈ π(D1) and for any t ∈ π(Dk), there is an
M -forwarding path from s to t whose vertices are contained in V (D1)∪̇ · · · ∪̇V (Dk).
If Dk ∈ D+(G) holds and t is a vertex from V (Dk) \ π(Dk), then there is an M -
saturated path between s and t whose vertices are contained in V (D1)∪̇ · · · ∪̇V (Dk).

Proof. For each i ∈ {1, . . . , k} \ {k}, let ti ∈ ⊤UG(π(Di)) and si+1 ∈ π(Di+1) be
vertices with tisi+1 ∈ E(G). Let s1 := s and tk := t. According to Lemma 3.7,
for each i ∈ {1, . . . , k} \ {k}, there is an M -saturated path Pi between si and ti
with V (Pi) ⊆ V (Di); additionally, there is an M -forwarding path Pk from sk to t
with V (Pk) ⊆ V (Dk). Thus, P1 + · · ·+ Pk + {tisi+1 : i = 1, . . . , k − 1} is a desired
M -forwarding path from s to t. The claim for t ∈ V (Dk)\π(Dk) can be also proved
in a similar way using Lemma 3.7. �

Lemma 5.6 yields Lemma 5.7:

Lemma 5.7. Let G be a graph, let M be a maximum matching of G, and let
D1, . . . , Dk, where k ≥ 2, be DM components with D1 �◦ · · · �◦ Dk such that
π(Di) 6= π(Di+1) for any i ∈ {1, . . . , k − 1}. Then, for any i, j ∈ {1, . . . , k} with
i 6= j, V (Di) ∩ V (Dj) = ∅.

Proof. Let q be the minimum number from {1, . . . , k − 1} such that Dq+1 shares
vertice with some Di, where i ∈ {1, . . . , q−1}. Let p be the maximum number from
{1, . . . , q − 1} such that V (Dq+1) ∩ V (Dp) 6= ∅. Then, Dp, . . . , Dq are mutually
disjoint. Additionally, from Lemma 5.5, we have Dp, . . . , Dq ∈ D+(G). Either
π(Dq+1) ⊆ V (Dp) or

⊤UG(π(Dq+1)) ∩ V (Dp) 6= ∅ holds. In the first case, let tq+1

be an arbitrary vertex from ⊤UG(π(Dq+1)), and, in the second case, let tq+1 be a
vertex from ⊤UG(π(Dq+1)) ∩ V (Dp). Let tq ∈ ⊤UG(π(Dq)) and sq+1 ∈ π(Dq+1)
be vertices with tqsq+1 ∈ E(G). From Lemma 3.7, there is an M -saturated path P
between sq+1 and tq+1 with V (P ) ⊆ V (Dq+1).

Let tp ∈ ⊤UG(π(Dp)) and sp+1 be vertices with tpsp+1 ∈ E(G). From Lemma 5.6,
there is an M -saturated path Q between sp+1 and tq with V (Q) ⊆ V (Dp) ∪ · · · ∪
V (Dq).

Trace P from sq+1, and let x be the first encountered vertex in Dp, for which
x = sq+1 is allowed. Then, by letting R := tpsp+1 + Q + tqsq+1 + sq+1Px, R is
an M -ear relative to Dp whose ends are x and tp. Note that R contains internal
vertices, e.g., sp+1.
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If x ∈ π(Dp) holds, then, under Lemma 3.7, let L be an M -saturated path
between x and tp with V (L) ⊆ V (Dp). Then, R + L is an M -alternating circuit
containing non-allowed edges of G. This is a contradiction. If x ∈ ⊤UG(π(Dp))
holds, then this contradicts Lemma 3.8. This completes the proof. �

Combining Lemmas 5.6 and 5.7, the next lemma can be stated, which we do not
use for proving Theorem 5.9.

Lemma 5.8. Let G be a graph. Let C1, C2 ∈ D(G) with C1 � C2, and let
D1, . . . , Dk ∈ D(G), where k ≥ 1, be DM components with C1 = D1, C2 = Dk,
and D1 �◦ · · · �◦ Dk. Then, for any s ∈ π(D1) and for any t ∈ π(Dk) (resp.
t ∈ V (Dk) \ π(Dk)), there is an M -forwarding path from s to t (resp. M -saturated
path between s and t) whose vertices are contained in V (D1)∪̇ · · · ∪̇V (Dk).

We now obtain Theorem 5.9.

Theorem 5.9. Let G be a graph. Then, � is a partial order over D(G).

Proof. Reflexivity and transitivity are obvious from the definition. Antisymmetry
is obviously implied by Lemma 5.7. �

In the following, we prove the properties required for ⌣ to form a TFR poset
(D(G),�,⌣). We provide Lemmas 5.10, 5.11, and 5.13, and thus prove Theo-
rem 5.14

Lemma 5.10. Let G be a graph, and let M be a maximum matching of G. Let
s, t ∈ V (G), and let S be the member of P(G) with s ∈ S. Let P be an M -
forwarding path P from s to t or an M -saturated path between s and t. If t ∈
S ∪ ⊤UG(S) holds, then P −E(G[S ∪ ⊤UG(S)]) is empty; otherwise, P −E(G[S ∪
⊤UG(S)]) is a path.

Proof. Suppose that the claim fails. The connected components of P − E(G[S ∪
⊤UG(S)]) except for the one that contains s are M -ears relative to S∪⊤UG(S) with
internal vertices. Let S′ be the set of the ends of these M -ears. From Lemma 3.8,
we have S′ ⊆ S. Trace P from s, and let s′ be the first vertex in S′. Then, sPr is
an M -saturated path between s and s′, which contradicts s ∼G s′. This proves the
claim. �

Lemma 5.10 derives the next lemma with Lemmas 3.7 and 3.8.

Lemma 5.11. Let G be a graph, and let M be a maximum matching of G. Let
s, t ∈ V (G), and let S and T be the members from P(G) with s ∈ S and t ∈ T ,
respectively.

(i) If there is no M -saturated path between s and t, whereas there is an M -
forwarding path from s to t, then K(S) � K(T ) holds.

(ii) If there is an M -saturated path between s and t, then K(S) ⌣ K(T ) holds.

Proof. Let P be an M -forwarding path from s to t or an M -saturated between s
and t. We proceed by induction on the number of edges in P . If V (P ) ⊆ S∪⊤UG(S)
holds, then Lemma 3.7 proves the statements. Hence, let V (P ) \ V (K(S)) 6= ∅,
and assume that the statements hold for every case where |E(P )| is fewer. By
Lemma 5.10, P − E(K(S)) is an M -exposed path one of whose end is t; let x be
the other end of P . Let y ∈ V (P ) be the vertex with xy ∈ E(P ). The subpath sPx
is obviously M -saturated between s and x, for which x ∈ V (K(S)) holds. Hence,
Lemma 3.7 implies x ∈ ⊤UG(S). Let R be the member of P(G) with y ∈ R. Then,
we have K(S) �◦ K(R).

If P is an M -saturated path, then yP t is an M -saturated path between y and t.
Therefore, the induction hypothesis implies K(R) ⌣ K(T ). Thus, K(S) ⌣ K(T )
is obtained, and (ii) is proved.
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Consider now the case where P is an M -forwarding path from s to t. The
subpath yP t is an M -forwarding path from y to t.

Claim 5.12. There is no M -saturated path between y and t in G.

Proof. Suppose the contrary, and let Q be an M -saturated path between y and t.
First, suppose that Q shares vertices with S∪⊤UG(S). Trace Q from y, and let z be
the first vertex in S ∪⊤UG(S). Then, zQy+ yx is an M -ear relative to S ∪⊤UG(S)
with internal vertices, e.g., y. This contradicts Lemma 3.8. Hence, Q is disjoint
from S ∪⊤UG(S). This however implies that sPx+xy+Q is an M -saturated path
between s and t, which contradicts the assumption. �

Therefore, under the induction hypothesis, K(R) � K(T ). We thus obtain
K(S) � K(T ), and (i) is proved. �

The symmetry of ⌣ now can be proved from Lemmas 5.8 and 5.11.

Lemma 5.13. For a graph G, the binary relation ⌣ is symmetric, that is, if
D1 ⌣ D2 holds for D1, D2 ∈ D(G), then D2 ⌣ D1 holds.

Proof. Let M be a maximum matching of G, and let x1 ∈ π(D1) and x2 ∈ π(D2).
From Lemma 5.8, D1 ⌣ D2 implies that there is an M -saturated path P between
x1 and x2. From Lemma 5.11, this implies D2 ⌣ D1. �

We now prove Theorem 5.14 from Theorem 5.9 and Lemma 5.13:

Theorem 5.14. For a graph G, the triple (D(G),�,⌣) is a TFR poset.

Proof. Under Theorem 5.9, it now suffices prove the conditions for ⌣. Nonre-
flexivity and transitivity are obvious from the definition. Symmetry is proved by
Lemma 5.13. �

For a graph G, the TFR poset (D(G),�,⌣) is uniquely determined. We denote
this TFR poset by O(G). We call this canonical structure of a graph G that the TIP
O(G) describes the nonbipartite Dulmage-Mendelsohn (DM ) decomposition of G.
We show in Section 8 that this is a generalization of the classical DM decomposition
for bipartite graphs.

Remark 5.15. As mentioned previously, a DM component is identified by its base.
Therefore, the nonbipartite DM decomposition is essentially the relations between
the members of P(G).

6. Preliminaries on Maximal Barriers

6.1. Classical Properties of Maximal Barriers. We now present some prelim-
inary properties of maximal barriers to be used in Section 7. A barrier is maximal

if it is inclusion-wise maximal. A barrier X is odd-maximal if it is maximal with
respect to DX ; that is, for no Y ⊆ DX , X ∪ Y is a barrier. A maximal barrier is
an odd-maximal barrier.

The next two propositions are classical facts. See Lovász and Plummer [15].

Proposition 6.1. Let G be a graph, and let X ⊆ V (G) be a barrier. Then, X is an
odd-maximal barrier if and only if every odd component of G−X are factor-critical.

Proposition 6.2. Let G be a graph. An odd-maximal barrier is a maximal barrier
if and only if CX = ∅.
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6.2. Generalization of Lovász’s Canonical Partition Theorem. In this sec-
tion, we explain a known theorem about the structure of a given odd-maximal
barrier [9]. This theorem is a generalization of Lovász’s canonical partition theo-

rem [9, 14, 15] for general graphs, which is originally for factor-connected graphs.
This theorem contains the classical result about the relationship between maximal
barriers and the Gallai-Edmonds decomposition, which states that A(G) of a graph
G is the intersection of all maximal barriers [15].

Theorem 6.3 (Kita [9]). Let G be a graph and X ⊆ V (G) be an odd-maximal
barrier of G. Then, there exist S1, . . . , Sk ∈ P(G), where k ≥ 1, such that X =
S1∪̇ · · · ∪̇Sk and DX = ⊤UG(S1)∪̇ · · · ∪̇⊤UG(Sk). The odd components of G − X
are the connected components of G[⊤UG(Si)], where i is taken over all {1, . . . , k}.

The next statement can be derived from Theorem 6.3 as a corollary.

Corollary 6.4. Let G be a graph. For each S ∈ P(G), G[⊤UG(S)] consists of
|S|+ def(G[S ∪ ⊤UG(S)]) connected components, which are factor-critical. If S ∈
PG(H) holds for some H ∈ G+(G), then def(G[S ∪ ⊤UG(S)]) = 0; otherwise,
def(G[S∪⊤UG(S)]) > 0. Let S :=

⋃
{S ∈ PG(H) : H ∈ G−(G) and V (H)∩X 6= ∅}.

Then, ΣS∈Sdef(G[S ∪ ⊤UG(S)]) = def(G).

7. Canonical Characterization of Maximal Barriers

We now derive the characterization of the family of maximal barriers in general
graphs, using the nonbipartite DM decomposition. In this section, unless otherwise
stated, let G be a graph. It is a known fact that a graph has an exponentially many
number of maximal barriers, however the family of maximal barriers can be fully
characterized in terms of ideals of O(G).

Definition 7.1. For I ⊆ D(G), the normalization of I is the set I ∪ D−(G). A
set I ′ ⊆ D(G) is said to be normalized if I ′ = I ∪ D−(G) for some I ⊆ D(G).

From Lemma 5.5, the next statement can be easily observed.

Observation 7.2. The normalization of an upper ideal is an upper ideal. The
normalization of a legitimate upper ideal is legitimate.

From Theorem 6.3, the next lemma characterizes the family of odd-maximal
barriers.

Lemma 7.3. Let G be a graph. A set of vertices X ⊆ V (G) is an odd-maximal
barrier if and only if there exists a legitimate normalized upper ideal I of the TFR
poset O(G) such that X =

⋃
{π(C) : C ∈ I}.

Proof. We first prove the sufficiency. Let X be an odd-maximal barrier, and, under
Theorem 6.3, let S1, . . . , Sk, where k ≥ 1, be the members of P(G) such that
X = S1 ∪ · · · ∪ Sk. Let I := {K(Si) : i = 1, . . . , k}. We prove that I is a
legitimate normalized upper ideal of O(G). For proving I is an upper ideal, it
suffices to prove that, for any C ∈ D(G), K(Si) �◦ C implies π(C) ⊆ X ; and, this
is obviously confirmed from Theorem 6.3. It is also confirmed by Theorem 6.3 that
this upper ideal is normalized and legitimate.

Next, we prove the necessity. Let I be a legitimate normalized upper ideal of
O(G), and let X =

⋃
{π(C) : C ∈ I}. From the definition of �◦, I being an upper

ideal implies that, for each C ∈ I, NG(
⊤UG(π(C))) ⊆ X ; I being legitimate implies

that ⊤UG(π(C)) ∩X = ∅. Hence, each connected component of G[⊤UG(π(C))] is
also a connected component of G−X that is factor-critical. Therefore, Corollary 6.4
implies that G − X has |X | + def(G) odd components, and accordingly X is a
barrier. By Theorem 6.3, these odd components are factor-critical, and therefore,
Proposition 6.1 implies that X is odd-maximal. �
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From Lemma 7.3 and Proposition 6.2, the family of maximal barriers is now
characterized:

Theorem 7.4. Let G be a graph. A set of vertices X ⊆ V (G) is a maximal barrier
if and only if there exists a spanning legitimate normalized upper ideal I of the
TFR poset O(G) such that X =

⋃
{π(C) : C ∈ I}.

8. Original DM Decomposition for Bipartite Graphs

In this section, we explain the original DM decomposition for bipartite graphs,
and prove this from our result in Section 5. In the remainder of this section, unless
stated otherwise, let G be a bipartite graph with color classes A and B, and let
W ∈ {A,B}.

Definition 8.1. The binary relations≤◦
W and ≤W over G(G) are defined as follows:

for G1, G2 ∈ G(G), let G1 ≤◦
W G2 if G1 = G2 or if EG[W ∩V (G2), V (G1) \W ] 6= ∅;

let G1 ≤W G2 if there exist H1, . . . , Hk ∈ G(G), where k ≥ 1, such that H1 = G1,
Hk = G2, and H1 ≤◦

W · · · ≤◦
W Hk.

Note that G1 ≤A G2 holds if and only if G2 ≤B G1 holds. The next theorem
determines the classical DM decomposition.

Theorem 8.2 (Dulmage and Mendelsohn [2–4, 15]). Let G be a bipartite graph
with color classes A and B, and let W ∈ {A,B}. Then, the binary relation ≤W is
a partial order over G(G).

We call the poset (G(G),≤W ) proved by Theorem 8.2 the Dulmage-Mendelsohn

decomposition of a bipartite graph G.
In the following, we demonstrate how our nonbipartite DM decomposition derives

Theorem 8.2 under the special properties of bipartite graphs regarding

(i) inconsistent factor-components (Observation 8.3) and
(ii) the basilica decomposition (Observation 8.4).

The set of inconsistent factor-components with some vertices from D(G) \ W is
denoted by G−

W (G). The next statement about G−

W (G) can be easily confirmed from
the Gallai-Edmonds structure theorem. This statement can also be proved from first
principles by a simple discussion on alternating paths, which is employed in original
proof. As is also the case in the basilica and nonbipartite DM decomposition, the
substantial part of the bipartite DM decomposition lies in G+(G).

Observation 8.3. The sets G−

A (G) and G−

B (G) are disjoint. Any C ∈ G−

B (G) is
minimal with respect to ≤A.

Bipartite graphs have a trivial structure regarding the basilica decomposition:

Observation 8.4. Let G be a bipartite graph with color classes A and B, and let
W ∈ {A,B}.

(i) Then, for each H ∈ G+(G), PG(H) = {V (H) ∩ A, V (H) ∩ B}. For each
H ∈ G−

W (G), PG(H) = {V (H) ∩W}.
(ii) For any H1, H2 ∈ G(G) with H1 6= H2, H1 ⊳ H2 does not hold.

Under Observation 8.4, we define DW (G) as the set {C ∈ D(G) : π(C) ⊆ W}.
Define a mapping fW : G+(G) ∪ G−

W (G) → DW (G) as fW (C) := K(V (C) ∩W ) for
C ∈ G+(G). The next statement is obvious from Observation 8.4.

Observation 8.5. The mapping fW is a bijection; and, for any C1, C2 ∈ G(G),
C1 ≤W C2 holds if and only if f(C1) � f(C2) holds.

According to Theorem 5.14 and Observation 8.5, the system (G+(G)∪G−

W (G),≤W

) is a poset. Observations 8.3 and 8.5 now prove Theorem 8.2.
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9. Computational Properties

Given a graph G, its basilica decomposition can be computed in O(|V (G)| ·
|E(G)|) time [7, 8]. Assume that the basilica decomposition of G is given. From
the definition of �◦, the poset (D(G),�) can be computed in O(|P(G)| · |E(G)|)
time, and accordingly, in O(|V (G)| · |E(G)|) time. According to the definition of
⌣◦, given the poset (D(G),�), the TFR poset O(G) can be obtained in O(|V (G)|)
time. Therefore, the next thereom can be stated.

Theorem 9.1. Given a graph G, the TFR poset O(G) can be computed in
O(|V (G)| · |E(G)|) time.
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