Skip to main content

Amplitude Amplification for Operator Identification and Randomized Classes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Abstract

Amplitude amplification (AA) is tool of choice for quantum algorithm designers to increase the success probability of query algorithms that reads its input in the form of oracle gates. Geometrically speaking, the technique can be understood as rotation in a specific two-dimensional space. We study and use a generalized form of this rotation operator to design algorithms in a geometric manner. Specifically, we apply AA to algorithms that take their input in the form of input states and in which rotations with different angles and directions are used in a unified manner. We show that AA can be used to sequentially discriminate between two unitary operators, both without error and with bounded-error, in an asymptotically optimal manner. We also show how to reduce error probability in one and two-sided bounded error algorithms more efficiently than the usual parallel repetitions technique; in particular, errors can be completely eliminated from the exact error algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A similar question on exact two-sided-error classical class was asked in http://cstheory.stackexchange.com/questions/20027.

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th STOC (1996)

    Google Scholar 

  2. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MathSciNet  Google Scholar 

  3. Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. ACM Trans. Comput. Theory 5(3), 1–33 (2013)

    Article  MathSciNet  Google Scholar 

  4. Kobayashi, H., Matsumoto, K., Tani, S.: Simpler exact leader election via quantum reduction. Chic. J. Theor. Comput. Sci. 2014(10) (2014)

    Google Scholar 

  5. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the 46th STOC (2014)

    Google Scholar 

  6. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplication and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  Google Scholar 

  7. Yoder, T.J., Low, G.H., Chuang, I.L.: Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett. 113, 210501 (2014). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.210501

    Article  Google Scholar 

  8. Lipton, R.J., Regan, K.W.: Quantum Algorithms via Linear Algebra: A Primer. The MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  9. Kawachi, A., Kawano, K., Le Gall, F., Tamaki, S.: Quantum query complexity of unitary operator discrimination. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 309–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_26

    Chapter  Google Scholar 

  10. Bera, D.: Detection and diagnosis of single faults in quantum circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(3), 587–600 (2018)

    Article  Google Scholar 

  11. Acin, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87(17), 177901 (2001)

    Article  Google Scholar 

  12. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  13. Biham, E., Biham, O., Biron, D., Grassl, M., Lidar, D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60(4), 2742 (1999)

    Article  Google Scholar 

  14. Biham, E., Kenigsberg, D.: Grover’s quantum search algorithm for an arbitrary initial mixed state. Phys. Rev. A 66(6), 062301 (2002)

    Article  Google Scholar 

  15. Høyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62(5), 052304 (2000)

    Article  Google Scholar 

  16. D’Ariano, G.M., Presti, P.L., Paris, M.G.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87(27), 270404 (2001)

    Article  Google Scholar 

  17. Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503 (2007)

    Article  MathSciNet  Google Scholar 

  18. Bera, D.: Amplitude amplification for operator identification and randomized classes. Technical report TR14-151. Electronic Colloquium on Computational Complexity (2018)

    Google Scholar 

  19. Bera, D., Green, F., Homer, S.: Small depth quantum circuits. ACM SIGACT News 38(2), 35–50 (2007)

    Article  Google Scholar 

  20. Høyer, P., de Wolf, R.: Improved quantum communication complexity bounds for disjointness and equality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 299–310. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7_24

    Chapter  Google Scholar 

  21. Buhrman, H., de Wolf, R.: Communication complexity lower bounds by polynomials. In: Proceedings of the 16th CCC (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bera, D. (2018). Amplitude Amplification for Operator Identification and Randomized Classes. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics